Skip to main content
  • Original article
  • Open access
  • Published:

Serum and urinary pentraxin-3 levels in type 2 diabetes and its relation to diabetic nephropathy

Abstract

Background

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease. Microalbuminuria is the most popular method for detecting the early signs of DN. However, pathological changes occur before the onset of microalbuminuria. So, there is a need for another biomarkers that might provide a sensitive and fast means for identification of the progression of DN. Pentraxin 3 (PTX3) is an acute-phase glycoprotein and a soluble receptor acting as an opsonin. PTX3 protein is expressed in vascular endothelial cells and macrophages. Thereby, its levels may reflect more directly the inflammatory status of the vasculature.

Aim

Evaluation of the levels of serum and urinary PTX3 in type 2 diabetes mellitus (T2DM) patients and its relation to DN.

Patients and methods

Group A: 20 healthy volunteers (control group). Group B: 20 patients with normoalbuminuric T2DM. Group C: 20 patients with microalbuminuric T2DM. Group D: 20 patients with macroalbuminuric T2DM. Also all the participants divided into two subgroups: Group 1: 40 participants with no nephropathy (controls and normoalbuminuric patients). Group 2: 40 patients with nephropathy (microalbuminuric and macroalbuminuric patients).

Results

There was no significant difference among all studied groups with respect to age, sex, lipid profile, urinary PTX3, C-reactive protein, and liver function test. Whereas BMI, hemoglobin level, HBA1C, fasting blood sugar, postprandial blood sugar, serum creatinine, estimated glomerular filtration rate, and 24 h urinary albumin excretion; showed high significant difference among all studied groups.

Serum albumin and total protein levels were highly significantly decreased in macroalbumiuric group as a result of proteinuria compared to the other three groups Serum PTX3 showed high significant difference between nephropathic (micro and macroalbuminuric) group and non nephropathic group (control and normoalbuminuric).

There were highly significant positive correlations between serum PTX3 and (fasting blood sugar, postprandial blood sugar, HBA1C, and 24 h urinary albumin) significant positive correlation with serum creatinine, whereas there were highly significant negative correlations between serum PTX3 and serum total protein and serum albumin.

Conclusion

Serum PTX3 increased progressively with DN and may be a serum biomarker for early diagnosis of DN. Whereas urinary PTX3 has no relation to DN.

References

  1. Matheson A, Willcox MD, Flanagan J, et al. Urinary biomarkers involved in type 2 diabetes: a review. Diabetes Metab Res Rev 2010; 26:150–171.

    CAS  PubMed  Google Scholar 

  2. Parving HH. Nephrology forum: diabetic nephropathy: prevention and treatment. Kidney Int 2001; 60:2041–2055.

    CAS  PubMed  Google Scholar 

  3. Lee YN. A report of the Malaysian dialysis registry of the national renal registry. Med J Malaysia 2008; 63 (C):5–8.

    PubMed  Google Scholar 

  4. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care 2014; 37:2864–2883.

    PubMed  PubMed Central  Google Scholar 

  5. Mora-Fernández C, DomínguezPimentel V, de Fuentes MM, et al. Diabetic kidney disease: from physiology to therapeutics. J Physiol 2014; 592:3997–4012.

    PubMed  PubMed Central  Google Scholar 

  6. Lutale JJ, Thordarson H, Vetvik K. Microalbuminuria among type 1 and type 2 diabetic patients of African origin in Dar Es Salaam, Tanzania. BMC Nephrol 2007; 8:2.

    PubMed  PubMed Central  Google Scholar 

  7. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 2003; 26:S33.

    Google Scholar 

  8. Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin Nephrol 2007; 27:195–207.

    PubMed  PubMed Central  Google Scholar 

  9. International Diabetes Federation: diabetes complicationsb, 6th ed. IDF Diabetes Atlas; 2013. 24–26.

  10. Stevens LA, Levey AS. Measurement of kidney function. Med Clin North Am 2005; 89:457–473.

    PubMed  Google Scholar 

  11. Tramonti G, Kanwar YS. Review and discussion of tubular biomarkers in the diagnosis and management of diabetic nephropathy. Endocrine 2013; 43:494–503.

    CAS  PubMed  Google Scholar 

  12. Ciéslik XXXX, Hrycek A. Long pentraxin 3 (PTX3) in the light of its structure, mechanism of action and clinical implications. Autoimmunity 2012; 45:119–128.

    PubMed  Google Scholar 

  13. Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002; 420:182–186.

    CAS  PubMed  Google Scholar 

  14. Alberti L, Gilardini L, Zulian A, et al. Expression of long pentraxin PTX3 in human adipose tissue and its relation with cardiovascular risk factors. Atherosclerosis 2009; 202:455–460.

    CAS  PubMed  Google Scholar 

  15. Napoleone E, Di Santo A, Bastone A, et al. Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation. Arterioscler Thromb Vasc Biol 2002; 22:782–787.

    CAS  PubMed  Google Scholar 

  16. Rusnati M, Camozzi M, Moroni E, et al. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood 2004; 104:92–99.

    CAS  PubMed  Google Scholar 

  17. Introna M, Vidal Alles V, Castellano M, et al. Cloning of mouse PTX3, a new member of the pentraxin gene family expressed at extrahepatic sites. Blood 1996; 87:1862–1872.

    CAS  PubMed  Google Scholar 

  18. Fazzini F, Peri G, Doni A, et al. PTX3 in smallvessel vasculitides: an independent indicator of disease activity produced at sites of inflammation. Arthritis Rheum 2001; 44:2841–2850.

    CAS  PubMed  Google Scholar 

  19. Yilmaz MI. Effect of renin angiotensin system blockade on pentraxin 3 levels in type-2 diabetic patients with proteinuria. Clin J Am Soc Nephrol 2009; 4:535–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carrero ML, Stenvinkel P. Recent insights in inflammation-associated wasting in patients with chronic kidney disease. Contrib Nephrol 2011; 171:120–126.

    PubMed  Google Scholar 

  21. Levey AS, Stevens LA, Schmid CH, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150:604–612.

    PubMed  Google Scholar 

  22. Pichaiwong W, Hudkins KL, Wietecha T, et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol 2013; 24:1088–1102.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin CL, Lee PH, Hsu YC, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol 2014; 25:1698–1709.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Suliman ME, Yilmaz MI, Carrero JJ, et al. Novel links between the long pentraxin 3, endothelial dysfunction, and albuminuria in early and advanced chronic kidney disease. Clin J Am Soc Nephrol 2008; 3:976–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun YM, Su Y, Li J, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun 2015; 433:359–361.

    Google Scholar 

  26. Abu Seman N. Evaluation of the association of plasma pentraxin 3 levels with type 2 diabetes and diabetic nephropathyin a Malay population. J Diabet Res 2013; 2013:298019.

    Google Scholar 

  27. Yamasaki K, Kurimura M. Determination of physiological plasma pentraxin 3 (PTX3) levels in healthy populations. Clin Chem Lab Med 2009; 47:471–477.

    CAS  PubMed  Google Scholar 

  28. Moloney A, Tunbridge WM, Ireland JT, et al. Mortality from diabetic nephropathy in the United Kingdom. Diabetologia 1983; 25:26–30.

    CAS  PubMed  Google Scholar 

  29. Gu HF. SOX2 has gender-specific genetic effects on diabetic nephropathy in samples from patients with type 1 diabetes mellitus in the GoKinD study. Gender Med 2009; 6:555–564.

    Google Scholar 

  30. Idogun ES, Kasia BE. Assessment of microalbuminuria and glycated hemoglobin in type 2 diabetes mellitus complications. Asian Paicfic J Trop Dis 2011; 1:203–205.

    Google Scholar 

  31. Assal HS, Tawfeek S, Rasheed EA, et al. Serum cystatin C and tubular urinary enzymes as biomarkers of renal dysfunction in type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 2013; 6:7–13.

    PubMed  PubMed Central  Google Scholar 

  32. Kundu D, Roy A, Mandal T, et al. Relation of microalbuminuria to glycosylated hemoglobin and duration of type 2 diabetes. Niger J Clin Pract 2013; 16:216–220.

    CAS  PubMed  Google Scholar 

  33. Sheikh SA, Baig JA, Iqbal T, et al. Prevalence of microalbuminuria with relation to glycemic control in type-2 diabetic patients in Karachi. J Ayub Med Coll Abbottabad 2009; 21:83–86.

    PubMed  Google Scholar 

  34. Hovind P, Tarnow L. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 2004; 328:1105.

    PubMed  PubMed Central  Google Scholar 

  35. Viswanathan V, Snehalatha C, Kumutha R, et al. Serum albumin levels in different stages of type 2 diabetic nephropathy. Indian J Nephrol 2004; 14:89–92.

    Google Scholar 

  36. Jeong J, Kwon SK, Kim HY. Effect of bicarbonate supplementation on renal function and nutritional indices in predialysis advanced chronic kidney disease. Electrolyte Blood Press 2014; 12:80–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Amr Abd El-Hady, Manal Aly, Alaa Mahmoud, et al. Study of plasma long pentraxin 3 as a marker of endothelial dysfunction in Egyptian patients with type 2 diabetes. Med J Cairo Univ 2012; 80:277–281.

    Google Scholar 

  38. Chae HW, Shin JI, Kwon AR, et al. Spot urine albumin to creatinine ratio and serum cystatin C are effective for detection of diabetic nephropathy in childhood diabetic patients. J Korean Med Sci 2012; 27:784–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu WN, Li H, Zheng FP, et al. Renal insufficiency and its associatedfactors in type 2 diabetic patients with normoalbuminuria. Zhonghua Nei Ke Za Zhi 2010; 49:24–27.

    CAS  PubMed  Google Scholar 

  40. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, et al. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004; 27:195–200.

    PubMed  Google Scholar 

  41. Murussi M, Gross JL, Silveiro SP. Glomerular filtration rate changes in normoalbuminuric and microalbuminuric Type 2 diabetic patients and normal individuals A 10-year follow-up. J Diabetes Complications 2006; 20:210–215.

    PubMed  Google Scholar 

  42. Tidman M, Sjöström P, Jones I. A Comparison of GFR estimating formulae based upon s-cystatin C and s-creatinine and a combination of the two. Nephrol Dial Transplant 2008; 23:154–160.

    CAS  PubMed  Google Scholar 

  43. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2011; 34:S11–S61.

    PubMed Central  Google Scholar 

  44. Reverter JL, Sentí M, Rubiés-Prat J, et al. Relationship between lipoprotein profile and urinary albumin excretion in type II diabetic patients with stable metabolic control. Diabetes Care 1994; 17:189–194.

    CAS  PubMed  Google Scholar 

  45. Sigdel M, Rajbhandari N, Basnet S, et al. Micro-albuminuria among type 2 diabetes mellitus patients in Pokhara, Nepal. Nepal Med Coll J 2008; 10:242–245.

    CAS  PubMed  Google Scholar 

  46. Suchitra MM, Sheshu Kumar M, Bitla AR, et al. Atherogenic dyslipidemia in diabetic nephropathy: lipoprotein (a), lipid ratios and atherogenic index. Int J Res Med Sci 2013; 1:455–459.

    Google Scholar 

  47. Joven J, Villabona C, Vilella E. Pattern of hyperlipoproteinemia in human nephrotic syndrome: influence of renal failure and diabetes mellitus. Nephron 1993; 64:565–569.

    CAS  PubMed  Google Scholar 

  48. Dubin R. Racial differences in the association of pentraxin-3 with kidney dysfunction: the multi-ethnic study of atherosclerosis. Nephrol Dialysis Transplant 2011; 26:1903–1908.

    CAS  Google Scholar 

  49. Pang Y, Tan Y, Li Y, et al. Pentraxin 3 is closely associated with tubulointerstitial injury in lupus nephritis. Medicine (Baltimore) 2016; 95:e2520.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said M. Al-Barshomy.

Additional information

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Barshomy, S.M., Mostafa, M.E.S., Shaker, G.E. et al. Serum and urinary pentraxin-3 levels in type 2 diabetes and its relation to diabetic nephropathy. Egypt J Intern Med 30, 182–190 (2018). https://doi.org/10.4103/ejim.ejim_9_18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ejim.ejim_9_18

Keywords