Skip to main content

A review of bone marrow niche cellular spectrum

Abstract

To perform a narrative review on the role of bone marrow (BM) niche in normal hematopoiesis.

MEDLINE databases and Ovid database were searched. The search was performed on 10 October 2018 and included articles published from 2015 to 2018 in English language.

The initial search presented 45 articles, which were included in the study.

Hematopoietic stem cells which produce a variety of hematopoietic lineage cells throughout the life are located in a specialized microenvironment called the ‘niche’ in the BM where they are governed. Several types of cells in the BM have been suggested to contribute to hematopoietic stem cell niche activity.

References

  1. Cogle CR, Saki N, Khodadi E, Li J, Shahjahani M, Azizodoost S. Bone marrow niche in the myelodysplastic syndromes. Leuk Res 2015; 39:1020–1027.

    Article  PubMed  Google Scholar 

  2. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4:7–25

    CAS  PubMed  Google Scholar 

  3. Raza A, Cruz R, Latif T, Mukherjee S, Galili N. The biology of myelodysplastic syndromes: unity despite heterogeneity. Hematol Rep 2010; 2:e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bulycheva E, Rauner M, Medyouf H, Theorl I, Bornhauser M, Hofbauer LC, et al. Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia 2015; 29:259–268.

    Article  CAS  PubMed  Google Scholar 

  5. Ellis SL, Grassinger J, Jones A, Judy B, Camenisch T, Haylock D, et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood 2011; 118:1516–1524.

    Article  CAS  PubMed  Google Scholar 

  6. Taichman RS, Emerson SG. The role of osteoblasts in the hematopoietic microenvironment. Stem cells 1998; 16:7–15.

    Article  CAS  PubMed  Google Scholar 

  7. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, et al. Osteopontin, a key component of the HSC niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106:1232–1239.

    Article  CAS  PubMed  Google Scholar 

  8. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425:841–846.

    Article  CAS  PubMed  Google Scholar 

  9. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4:263–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA, Asch AS. Human BM microvascular endo-thelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 1995; 86:3353–3363.

    Article  CAS  PubMed  Google Scholar 

  11. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent HSCs. Cell Stem Cell 2010; 6:251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481:457–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates HSC dormancy, self-renewal and chemoresistance. Nat Med 2012; 18:1651–1657.

    Article  CAS  PubMed  Google Scholar 

  14. Kusumbe AP, Ramasamy SK, Itkin T, Mae MA, Langen UH, Betsholtz C, et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 2016; 532:380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, et al. Distinct BM blood vessels differentially regulate haematopoiesis. Nature 2016; 532:323–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Birbrair A, Delbono O. Pericytes are essential for skeletal muscle formation. Stem Cell Rev 2015; 11:547–548.

    Article  Google Scholar 

  17. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique BM niche. Nature 2010; 466:829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Son YJ, Thompson WJ. Schwann cell processes guide regeneration of peripheral axons. Neuron 1995; 14:125–132.

    Article  CAS  PubMed  Google Scholar 

  19. Ozaki A, Nagai A, Lee YB, Myong NH, Kim SU. Expression of cytokines and cytokine receptors in human Schwann cells. Neuroreport 2008; 19:31–35.

    Article  CAS  PubMed  Google Scholar 

  20. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Non-myelinating Schwann cells maintain HSC hibernation in the BM niche. Cell 2011; 147:1146–1158.

    Article  CAS  PubMed  Google Scholar 

  21. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 2008; 452:442–447.

    Article  CAS  PubMed  Google Scholar 

  22. Yamazaki K, Allen TD. Ultrastructural morphometric study of efferent nerve terminals on murine BM stromal cells, and the recognition of a novel anatomical unit: the ‘neuro-reticular complex’. Am J Anat 1990; 187:261–276.

    Article  CAS  PubMed  Google Scholar 

  23. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 2014; 20:833–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Afan AM, Broome CS, Nicholls SE, Whetton AD, Miyan JA. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br J Haematol 1997; 98:569–577.

    Article  CAS  PubMed  Google Scholar 

  25. Lucas D, Battista M, Shi PA, Isola L, Frenette PS. Mobilized HSC yield depends on species-specific circadian timing. Cell Stem Cell 2008; 3:364–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, Lacombe J, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered HSC niche. Cell Stem Cell 2014; 15:365–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P, et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 2007; 8:1123–1131.

    Article  CAS  PubMed  Google Scholar 

  28. Fitch SR, Kimber GM, Wilson NK, Parker A, Mirshekar-Syahkal B, Göttgens B, et al. Signaling from the sympathetic nervous system regulates HSC emergence during embryogenesis. Cell Stem Cell 2012; 11:554–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12:657–664.

    Article  CAS  PubMed  Google Scholar 

  30. Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, et al. TG regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci USA 2005; 102:18813–18818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SE, Wakkach A, Blin-Wakkach C. Osteoclasts promote the formation of HSC niches in the BM. J Exp Med 2012; 209:537–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 2011; 26:1517–1532.

    Article  CAS  PubMed  Google Scholar 

  33. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116:4815–4828.

    Article  CAS  PubMed  Google Scholar 

  34. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 2011; 208:261–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, et al. Monocytes-macrophages that express smooth muscle actin preserve primitive hematopoietic cells in the BM. Nat Immunol 2012; 13:1072–1082.

    Article  CAS  PubMed  Google Scholar 

  36. Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R, A-González N, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 2013; 153:1025–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, et al. Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M. Diabetes 2015; 64:2957–2968.

    Article  CAS  PubMed  Google Scholar 

  38. Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cell microenvironment interactions. Nature 1991; 352:438–441.

    Article  CAS  PubMed  Google Scholar 

  39. Wheway J, Mackay CR, Newton RA, Sainsbury A, Boey D, Herzog H, Mackay F. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J ExpMed 2005; 202:1527–1538.

    Article  CAS  Google Scholar 

  40. Park MH, Jin HK, Min WK, Lee WW, Lee JE, Akiyama H, et al. Neuropeptide Y regulates the HSC microenvironment and prevents nerve injury in the BM. EMBO J 2015; 34:1648–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manwani D, Bieker JJ. The erythroblastic island. CurrTopDevBiol 2008; 82:23–53.

    CAS  Google Scholar 

  42. Nakamura-Ishizu A, Takubo K, Fujioka M, Suda T. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem Biophys Res Commun 2014; 454:353–357.

    Article  CAS  PubMed  Google Scholar 

  43. Birbrair A, Frenette PS. Niche heterogeneity in the BM. Ann NY Acad Sci 2016; 1370:82–96.

    Article  PubMed  Google Scholar 

  44. Olson TS, Caselli A, Otsuru S, Hofmann TJ, Williams R, Paolucci P, et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood, 2013; 121:5238–5249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of HSCs. Nat Med 2014; 20:1321–1326.

    Article  CAS  PubMed  Google Scholar 

  46. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate HSC quiescence through CXCL4 secretion. Nat Med 2014; 20:1315–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mercier FE, Ragu C, Scadden DT. The BM at the crossroads of blood and immunity. Nat Rev Immunol 2012; 12:49–60.

    Article  CAS  Google Scholar 

  48. Degliantoni G, Murphy M, Kobayashi M, Francis MK, Perussia B, Trinchieri G. Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon. J Exp Med 1985; 162:1512–1530.

    CAS  PubMed  Google Scholar 

  49. Zeng D, Hoffmann P, Lan F, Huie P, Higgins J, Strober S. Unique patterns of surface receptors, cytokine secretion, and immune functions distinguish T cells in the BM from those in the periphery: impact on allogeneic BM transplantation. Blood 2002; 99:1449–1457.

    Article  CAS  PubMed  Google Scholar 

  50. Urbieta M, Barao I, Jones M, Jurecic R, Panoskaltsis-Mortari A, Blazar BR, et al. Hematopoietic progenitor cell regulation by CD4+CD25+ T cells. Blood 2010; 115:4934–4943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging ofT reg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 2011; 474:216–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol 2010; 31:318–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Levesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104:65–72.

    Article  CAS  PubMed  Google Scholar 

  54. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 2011; 208:251–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eash KJ, Means JM, White DW, Link DC. CXCR4 is a key regulator of neutrophil release from the BM under basal and stress granulopoiesis conditions. Blood 2009; 113:4711–4719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walaa Hamdy Ezz MBBCh.

Additional information

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoieb, S.A., Abdel Hafez, M.A., Abd El-Hamid, A.E. et al. A review of bone marrow niche cellular spectrum. Egypt J Intern Med 31, 397–402 (2019). https://doi.org/10.4103/ejim.ejim_68_19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ejim.ejim_68_19

Keywords