Skip to main content

Extracellular vesicles and systemic lupus erythromatosus

Abstract

Introduction

Extracellular vesicles (EV) have emerged as important ‘nanoshuttles’ of information between cells, carrying proteins, genetic information, and bioactive lipids to modify the phenotype and function of recipient cells. EVs are potential regulators in autoimmune disorders, playing a determinant role in the appearance and maintenance of inflammation.

Objective

This study aimed to carry out an up-to-date review of the EVs and their relationship with systemic lupus erythromatosus.

Data sources

Medline databases (PubMed, Medscape, ScienceDirect, EMF-Portal) and all materials available in the Internet till 2018.

Study selection

This search yielded 275 articles. The articles were studied to perform an up-to-date review of the extracellular vesicles and their relationship with systemic lupus erythromatosus.

Data extraction

If the studies did not fulfill the inclusion criteria, they were excluded. Study quality assessment included whether ethical approval was obtained, the eligibility criteria specified, appropriate controls, and adequate information and defined assessment measures.

Data synthesis

Comparisons were made by a structured review, with the results tabulated.

Conclusion

We can safely conclude that EVs play an important role in the complex pathogenesis and management of systemic lupus erythematosus.

References

  1. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016; 36:301–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fujita Y, Yoshioka Y, Ito S, Araya J, Kuwano K, Ochiya T. Intercellular communication by extracellular vesicles and their microRNAs in asthma. Clin Ther 2014; 36:873–881.

    Article  CAS  PubMed  Google Scholar 

  3. Dema B, Charles N. Advances in mechanisms of systemic lupus erythematosus. Discov Med 2014; 17:247–255.

    PubMed  Google Scholar 

  4. Cosenza S, Ruiz M, Maumus M, Jorgensen C, Noël D. Pathogenic or therapeutic extracellular vesicles in rheumatic diseases: role of mesenchymal stem cell-derived vesicles. Int J Mol Sci 2017; 18:889.

    Article  PubMed Central  CAS  Google Scholar 

  5. Perez-Hernandez J, Redon J, Cortes R. Extracellular vesicles as therapeutic agents in systemic lupus erythematosus. Int J Mol Sci 2017; 18:E717.

    Article  PubMed  CAS  Google Scholar 

  6. Tsokos GC. Systemic lupus erythematosus. N Engl J Med 2011; 365:2110–2121.

    Article  CAS  PubMed  Google Scholar 

  7. Pisetsky DS, Lipsky PE. Microparticles as autoadjuvants in the pathogenesis of SLE. Nat Rev Rheumatol 2010; 6:368–372.

    Article  CAS  PubMed  Google Scholar 

  8. Alfadhli S. Influence of endothelial nitric oxide synthase gene intron-4 27bp repeat polymorphism on its expression in autoimmune diseases. Dis Markers 2013; 34:349–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perez-Hernandez J, Forner MJ, Pinto C, Chaves FJ, Cortes R, Redon J. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS One 2015; 10:e0138618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ortega LM, Schultz DR, Lenz O, Pardo V, Contreras GN. Review: lupus nephritis: pathologic features, epidemiology and a guide to therapeutic decisions. Lupus 2010; 19:557–574.

    Article  CAS  PubMed  Google Scholar 

  11. Zickert A, Sundelin B, Svenungsson E, Gunnarsson I. Role of early repeated renal biopsies in lupus nephritis. Lupus Sci Med 2014; 1:e000018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lázaro-Ibáñez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido A, Yliperttula M. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 2014; 74:1379–1390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nielsen CT, Østergaard O, Johnsen C, Jacobsen S, Heegaard NH. Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus. Arthritis Rheum 2011; 63:3067–3077.

    Article  PubMed  Google Scholar 

  14. Parker B, Al-Husain A, Pemberton P, Yates AP, Ho P, Gorodkin R, et al. Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus. Ann Rheum Dis 2014; 73:1144–1150.

    Article  CAS  PubMed  Google Scholar 

  15. Østergaard O, Nielsen CT, Iversen LV, Tanassi JT, Knudsen S, Jacobsen S, Heegaard NH. Unique protein signature of circulating microparticles in systemic lupus erythematosus. Arthritis Rheum 2013; 65:2680–2690.

    PubMed  Google Scholar 

  16. Zhou H, Cheruvanky A, Hu X, Matsumoto T, Hiramatsu N, Cho ME, et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int 2008; 74:613–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG, Da Silva N, et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 2010; 78:191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One 2013; 8:e73798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paley MA, Strand V, Kim AH. From mechanism to therapies in systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29:178–186.

    Article  PubMed  Google Scholar 

  20. Rovin BH, van Vollenhoven RF, Aranow C, Wagner C, Gordon R, Zhuang Y, et al. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis. Arthritis Rheumatol 2016; 68:2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hahn S, Giaglis S, Chowdhury CS, Hosli I, Hasler P. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 2013; 35:439–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 2014; 114:345–353.

    Article  CAS  PubMed  Google Scholar 

  23. Lee J, Kim OY, Gho YS. Proteomic profiling of Gram-negative bacterial outer membrane vesicles: current perspectives. Proteomics Clin Appl 2016; 10:897–909.

    Article  CAS  PubMed  Google Scholar 

  24. Ostman A, Heldin CH. Department of Pathology-Oncology, Cancer Center Karolinska, Karolinska Institutet, R8:03, SE-171 76 Stockholm, Sweden. Adv Cancer Res 2007; 97:247–274.

    Article  PubMed  CAS  Google Scholar 

  25. Prado N, Marazuela EG, Segura E, Fernández-García H, Villalba M, Théry C, et al. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 2008; 181:1519–1525.

    Article  CAS  PubMed  Google Scholar 

  26. Vinuela-Berni V, Doniz-Padilla L, Figueroa-Vega N, Portillo-Salazar H, Abud-Mendoza C, Baranda L, Gonzalez-Amaro R. Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease. Clin Exp Immunol 2015; 180:442–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dieker J, Tel J, Pieterse E, Thielen A, Rother N, Bakker M, et al. Circulating apoptotic microparticles in systemic lupus erythematosus patients drive the activation of dendritic cell subsets and prime neutrophils for NETosis. Arthritis Rheumatol 2016; 68:462–472.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng L, Sun X, Scicluna BJ, Coleman BM, Hill AF. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 2014; 86:433–444.

    Article  CAS  PubMed  Google Scholar 

  29. Gutwein P, Schramme A, Abdel-Bakky MS, Doberstein K, Hauser IA, Ludwig A, et al. ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases. J Biomed Sci 2010; 17:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB, Susztak K. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med 2008; 14:290–298.

    Article  CAS  PubMed  Google Scholar 

  31. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14:677–685.

    Article  CAS  PubMed  Google Scholar 

  32. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 2012; 72:4920–4930.

    Article  CAS  PubMed  Google Scholar 

  33. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010; 18:1606–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim SH, Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, Robbins PD. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 2006; 13:289–300.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 2005; 174:6440–6448.

    Article  CAS  PubMed  Google Scholar 

  36. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farini A, Sitzia C, Erratico S, Meregalli M, Torrente Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cell Int 2014; 2014:306573.

    Google Scholar 

  38. Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Stem Cell 2012; 10:244–258.

    CAS  Google Scholar 

  39. Figueroa FE, Cuenca Moreno J, la Cava A. Novel approaches to lupus drug discovery using stem cell therapy. Role of mesenchymal-stem-cell-secreted factors. Expert Opin Drug Discov 2014; 9:555–566.

    Article  CAS  PubMed  Google Scholar 

  40. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 2012; 147:47–54.

    Article  CAS  PubMed  Google Scholar 

  41. Liu S, Liu D, Chen C, Hamamura K, Moshaverinia A, Yang R, et al. MSC transplantation improves osteopenia via epigenetic regulation of notch signaling in lupus. Cell Metab 2015; 22:606–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014; 28:970–973.

    Article  CAS  PubMed  Google Scholar 

  43. Bianco NR, Kim SH, Ruffner MA, Robbins PD. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum 2009; 60:380–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gho YS, Lee C. Emergent properties of extracellular vesicles: a holistic approach to decode the complexity of intercellular communication networks. Mol Biosyst 2017; 13:1291–1296.

    Article  CAS  PubMed  Google Scholar 

  45. Choi DS, Kim DK, Kim YK, Gho YS. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev 2015; 34:474–490.

    Article  CAS  PubMed  Google Scholar 

  46. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101:2087–2092.

    Article  CAS  PubMed  Google Scholar 

  47. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29:341–345.

    Article  CAS  PubMed  Google Scholar 

  48. Gyorgy B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 2015; 55:439–464.

    Article  CAS  PubMed  Google Scholar 

  49. Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles 2015; 4:30087.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha N. Omran BSc.

Additional information

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omran, R.N., El Shebini, E.M., Zahran, E.S. et al. Extracellular vesicles and systemic lupus erythromatosus. Egypt J Intern Med 31, 389–396 (2019). https://doi.org/10.4103/ejim.ejim_67_19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ejim.ejim_67_19

Keywords