Skip to main content

The relationship between serum dipeptidyl peptidase-4 enzyme and nonalcoholic fatty liver disease in diabetic and nondiabetic patients

Abstract

Background

Dipeptidyl peptidase-4 (DPP4) is a membrane-associated peptidase. It has widespread organ distribution throughout the body and exerts pleiotropic effects. The liver expresses DPP4 to a high degree.

Nonalcoholic fatty liver disease (NAFLD) is more prevalent in patients with type 2 diabetes mellitus (T2DM), and is associated with increased mortality rates. Currently, there is no approved pharmacologic agent for the management of NAFLD. We need to discover more agents in the pathogenesis of NAFLD to attack it. Therefore, the aim of this work is to study the relationship between serum DPP4 enzyme and NAFLD in diabetic and nondiabetic patients.

Patients and methods

This study was conducted on 160 patients divided equally into four groups: the control group included healthy participants; the T2DM group included type 2 diabetic patients without NAFLD; the NAFLD group included nondiabetic NAFLD patients; and the T2DM-NAFLD group included T2DM patients with NAFLD. Laboratory investigation included glycosylated hemoglobin, liver enzymes, lipid profile, and serum DPP4 enzyme.

Results

DPP4 was significantly higher in the T2DM-NAFLD group compared with the other three groups, and in the NAFLD group and T2DM group compared with the control group. There was a significant direct correlation between serum DPP4 and BMI, glycosylated hemoglobin, serum cholesterol, triglycerides, and low-density lipoprotein (LDL). There was a significant inverse correlation between serum DPP4 and high-density lipoprotein (HDL).

Conclusion

DPP4 is significantly higher in diabetic patients compared with nondiabetic patients and in NAFLD patients compared with non-NAFLD patients. DPP4 can be proposed as a novel candidate in NAFLD pathogenesis.

References

  1. Jin ZZ, Kelseanna HH, Xing YW, Su JF, Xun LP, Fan DM, et al. Clinical guidelines of non-alcoholic fatty liver disease: a systematic review. World J Gastroenterol 2016; 22:8226–8233.

    Article  Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012; 55:2005–2023.

    Article  Google Scholar 

  3. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362:1675–1685.

    Article  CAS  Google Scholar 

  4. Loomba R, Lutchman G, Kleiner DE, Ricks M, Feld JJ, Borg BB, et al. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2009; 29:172–182.

    Article  CAS  Google Scholar 

  5. Ratziu V, Charlotte F, Bernhardt C, Giral P, Halbron M, Lenaour G, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy [FLIRT 2] extension trial. Hepatology 2010; 51:445–453.

    Article  CAS  Google Scholar 

  6. Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis [LEAN]: a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387:679–690.

    Article  CAS  Google Scholar 

  7. Erin EM, Daniel JD. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014; 35:992–1019.

    Article  Google Scholar 

  8. Yazbeck R, Howarth GS, Abbott C. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol Sci 2009; 30:600–607.

    Article  CAS  Google Scholar 

  9. Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother 2009; 58:1723–1747.

    Article  CAS  Google Scholar 

  10. Kaji K, Yoshiji H, Ikenaka Y, Noguchi R, Aihara Y, Douhara A, et al. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 2014; 49:481–491.

    Article  CAS  Google Scholar 

  11. Lee SA, Kim YR, Yang EJ, Kwon E-J., Kim SH, Kang SH, et al. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2013; 98:2553–2561.

    Article  CAS  Google Scholar 

  12. Radwan HA, Hasniza ZH, Zaid H, Sameer DS, Sekaran M. Serum levels of soluble CD26/dipeptidyl peptidase-IV in type 2 diabetes mellitus and its association with metabolic syndrome and therapy with antidiabetic agents in malaysian subjects. Plos One 2010; 10:e0140618.

    Google Scholar 

  13. Yang J, Campitelli J, Hu G. Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin. Life Sci 2007; 81:272–279.

    Article  CAS  Google Scholar 

  14. Baumeier C, Saussenthaler S, Kammel A, Jähnert M, Schlüter L, Hesse D, et al. Hepatic DPP4 DNA-methylation associates with fatty liver. Diabetes 2017; 66:25–35.

    Article  CAS  Google Scholar 

  15. Fadini GP, Albiero M, Menegazzo L, de Kreutzenberg SV, Avogaro A. The increased dipeptidyl peptidase-4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metformin-treated patients. Diabetes Obes Metab 2012; 14:518–522.

    Article  CAS  Google Scholar 

  16. McKillop AM, Duffy NA, Lindsay JR. Decreased dipeptidyl peptidase-IV activity and glucagon-like peptide-1 amide degradation in type 2 diabetic subjects. Diabetes Res Clin Pract 2008; 79:79–85.

    Article  CAS  Google Scholar 

  17. Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 2011; 60:1917–1925.

    Article  CAS  Google Scholar 

  18. Kanazawa I, Tanaka K, Sugimoto T. DPP-4 inhibitors improve liver dysfunction in type 2 diabetes mellitus. Med Sci Monit 2014; 20: 1662–1667.

    Article  CAS  Google Scholar 

  19. Turcot V, Bouchard L, Faucher G, Tchernof A, Deshaies Y, Perusse L, et al. DPP4 gene DNA methylation in the omentum is associated with its gene expression and plasma lipid profile in severe obesity. Obesity 2011; 19:388–395.

    Article  CAS  Google Scholar 

  20. Turcot V, Tchernof A, Deshaies Y, Pérusse L, Bélisle A, Marceau P, et al. Comparison of the dipeptidyl peptidase-4 gene methylation levels between severely obese subjects with and without the metabolic syndrome. Diabetol Metab Syndr 2013; 5:4.

    Article  CAS  Google Scholar 

  21. Minoru I, Takumi K, Eitaro T, Michio S. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 2013; 19: 2298–2306.

    Article  Google Scholar 

  22. Hanley AJ, Wagenknecht LE, Festa A, D’Agostino RB Jr, Haffner SM. Alanine aminotransferase and directly measured insulin sensitivity in a multiethnic cohort: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2007; 30:1819–1827.

    Article  CAS  Google Scholar 

  23. Balaban YH, Korkusuz P, Simsek H, Gokcan H, Gedikoglu G, Pinar A, et al. Dipeptidyl peptidase IV [DDP IV] in NASH patients. Ann Hepatol 2007; 6:242–250.

    Article  CAS  Google Scholar 

  24. Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 2011; 54:1214–1223.

    Article  CAS  Google Scholar 

  25. Firneisz G, Varga T, Lengyel G, Fehér J, Ghyczy D, Wichmann B, et al. Serum dipeptidyl peptidase-4 activity in insulin resistant patients with nonalcoholic fatty liver disease: a novel liver disease biomarker. PLoS One 2010; 5:e12226.

    Google Scholar 

  26. Cuthbertson DJ, Irwin A, Gardner CJ. Improved glycaemia correlated with liver fat reduction in obese, type 2 diabetes, patients with given glucagon-like peptide-1 [GLP-1] receptor agonists. PLoS One 2012; 7: e50117.

    Google Scholar 

  27. Buse JB, Klonoff DC, Nielsen LL. Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic biomarkers in patients with type 2 diabetes: an interim analysis of data from the open-label, uncontrolled extension of three double-blind, placebo-controlled trials. Clin Ther 2007; 29:139–153.

    Article  CAS  Google Scholar 

  28. Gupta NA, Mells J, Dunham RM. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010; 51:1584–1592.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaaeldin A. Dawood.

Additional information

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawood, A.A., Ghobashy, Y.E. & Elgamal, A.A. The relationship between serum dipeptidyl peptidase-4 enzyme and nonalcoholic fatty liver disease in diabetic and nondiabetic patients. Egypt J Intern Med 30, 49–53 (2018). https://doi.org/10.4103/ejim.ejim_34_17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ejim.ejim_34_17

Keywords