Skip to main content
  • Review article
  • Open access
  • Published:

Type 1 diabetes mellitus and enterovirus linkage: search for associated etiopathology

Abstract

Type 1 diabetes (T1D) is believed to have complex interplay between several enteroviruses (EVs) and host immune system disturbance induced or accelerated by viral pathogenesis. In the past two decades, there has been global upsurge in the incidence of childhood T1D, especially in those less than 5 years. Because of the ubiquity and persistence of EVs in human bowel and their tropism to pancreatic cells, they tend to express certain viral proteins that have propensity for genetic manipulation and activation of autoimmunity that could be potentially linked to T1D. In view of these, we present this review of existing literature in order to analyze the epidemiology and possible association between EV infections, host immune dysfunction, and development of autoimmunity or T1D with the view to encourage the investigation of EV infections and associated virus-induced islet cells autoimmunity and immunopathy in genetically predisposed children.

References

  1. Grieco FA, Vendrame F, Spagnuolo I, Dotta F. Innate immunity and the pathogenesis of type 1 diabetes. Semin Immunopathol 2011; 33: 57–66.

    CAS  PubMed  Google Scholar 

  2. Rodriguez-Calvo T, von Herrath MG. Enterovirus infection and type 1 diabetes: closing in on a link? Diabetes 2015; 64:1503–1505.

    CAS  PubMed  Google Scholar 

  3. Pugliese A. Advances in the etiology and mechanisms of type 1 diabetes. Discov Med 2014; 18:141–150.

    PubMed  Google Scholar 

  4. Gale EAM. Epidemiology of type 1 diabetes. 2014. Available at: http://doi.org/10.14496/dia.2104085168.39. [Accessed 26 April 2017].

  5. International Committee on Taxonomy of Viruses. Virus taxonomy: 2009 release. ICTV. Available at: http://www.ictvonline.org/virusTaxonomy.asp?version=2009. [Accessed 26 April 2017].

  6. Oliveira LHS. Enteroviruses. In: Oliveira LHS, editor. Introduction to human virology. Rio de Janeiro: Editora Cultura Médica; 1994. p. 341.

    Google Scholar 

  7. Yeung WC, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 2011; 342:d35.

    Google Scholar 

  8. Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW. Viral antibodies in diabetes mellitus. Br Med J 1969; 3:627–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaidane H, Hober D. Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab 2008; 34:537–548.

    CAS  PubMed  Google Scholar 

  10. Gleason RE, Kahn CB, Funk IB, Craighead JE. Seasonal incidence of insulin-dependent diabetes (IDDM) in Massachusetts, 1964–1973. Int J Epidemiol 1982; 11:39–45.

    CAS  PubMed  Google Scholar 

  11. Huff JC, Hierholzer JC, Farris WA. An ‘outbreak’ of juvenile diabetes mellitus: consideration of a viral etiology. Am J Epidemiol 1974; 100:277–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Salvatoni A, Baj A, Bianchi G, Federico G, Colombo M, Toniolo A. ntrafamilial spread of enterovirus infections at the clinical onset of type 1 diabetes. Pediatr Diabetes 2013; 14:407–416.

    PubMed  Google Scholar 

  13. Oikarinen M, Tauriainen S, Oikarinen S. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 2012; 61:687–691.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. mmunohistochemical analysis of the relationship between islet cell proliferation and the production of the enteroviral capsid protein, VP1, in the islets of patients with recent-onset type 1 diabetes. Diabetologia 2011; 54: 2417–2420.

    CAS  PubMed  Google Scholar 

  15. Oikarinen S, Martiskainen M, Tauriainen S. Enterovirus RNA in blood is linked to the development of type 1 diabetes Diabetes 2011; 60:276–279.

    CAS  PubMed  Google Scholar 

  16. Centers for Disease Control and Prevention. Non-polio enteroviruses. Transmission. 2016. Available at: https://www.cdc.gov/non-polio-enterovirus/about/transmission.html. [Accessed 25 April 2017].

  17. Fong TT, Lipp EK. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 2005; 69:357–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferreira RC, Guo H, Coulson RM. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 2011; 63:2538–2550.

    Google Scholar 

  19. Oikarinen S, Martiskainen M, Tauriainen S, Huhtala H, Ilonen J, Veijola R, et al. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 2014; 60:276–279.

    Google Scholar 

  20. Coppieters KT, Dotta F, Amirian N. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 2012; 209:51–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 2009; 52:1143–1151.

    CAS  PubMed  Google Scholar 

  22. Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 2007; 104:5115–5120.

    CAS  PubMed  Google Scholar 

  23. Hober D, Sauter P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 2010; 6:279–289.

    PubMed  Google Scholar 

  24. Spagnuolo I, Patti A, Sebastiani G, Nigi L, Dotta F. The case for virus-induced type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2013; 20:292–298.

    CAS  PubMed  Google Scholar 

  25. Laitinen OH, Honkanen H, Pakkanen O, Oikarinen S, Hankaniemi MM, Huhtala H, et al. Coxsackievirus B1 is associated with induction of β-cell autoimmunity that portends type 1 diabetes. Diabetes 2014; 63: 446–455.

    CAS  PubMed  Google Scholar 

  26. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 2009; 155: 173–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Graham KL, Sanders N, Tan Y, Allison J, Kay TW, Coulson BS. Rotavirus infection accelerates type 1 diabetes in mice with established insulitis. J Virol 2008; 82:6139–6149.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaskins HR, Prochazka M, Hamaguchi K, Serreze DV, Leiter EH. Beta cell expression of endogenous xenotropic retrovirus distinguishes diabetes-susceptible NOD/Lt from resistant NON/Lt mice. J Clin Invest 1992; 90:2220–2227.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoon JW, Jun HS. Viruses cause type 1 diabetes in animals. Ann NY Acad Sci 2006; 1079:138–146.

    PubMed  Google Scholar 

  30. Niklasson B, HultmanT, Kallies R, Niedrig M, Nilsson R, Berggren PO, et al. The BioBreeding rat diabetes model is infected with Ljungan virus. Diabetologia 2007; 50:1559–1560.

    PubMed  Google Scholar 

  31. Ahmed R, Byrne JA, Oldstone MB. Virus specificity of cytotoxic T lymphocytes generated during acute lymphocytic choriomeningitis virus infection: role of the H-2 region in determining cross-reactivity for different lymphocytic choriomeningitis virus strains. J Virol 1984; 51:34–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mouquet H, Nussenzweig MC. Polyreactive antibodies in adaptive immune responses to viruses. Cell Mol Life Sci 2011; 69:1435–1445.

    PubMed  Google Scholar 

  33. Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diab Rep 2013; 13:601–607.

    CAS  PubMed  Google Scholar 

  34. Vaarala O, Atkinson MA, Neu J. The ‘perfect storm’ for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 2008; 57:2555–2562.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaidane H, Sane F, Gharbi J, Aouni M, Romond MB, Hober D. Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models. Diabetes Metab Res Rev 2009; 25:591–603.

    CAS  PubMed  Google Scholar 

  36. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998; 4:781–785.

    CAS  PubMed  Google Scholar 

  37. Christen U, von Herrath MG. Induction, acceleration or prevention of autoimmunity by molecular mimicry. Mol Immunol 2004; 40:1113–1120.

    CAS  PubMed  Google Scholar 

  38. Elshebani A, Olsson A, Westman J, Tuvemo T, Korsgren O, Frisk G. Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes. Virus Res 2007; 124:193–203.

    CAS  PubMed  Google Scholar 

  39. Anagandula M, Richardson SJ, Oberste MS, Sioofy-Khojine AB, Hyoty H, Morgan NG, et al. Infection of human islets of Langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol 2014; 86:1402–1411.

    CAS  PubMed  Google Scholar 

  40. Sadeharju K, Knip M, Hiltunen M, Akerblom HK, Hyoty H. The HLA-DR phenotype modulates the humoral immune response to enterovirus antigens. Diabetologia 2003; 46:1100–1105.

    CAS  PubMed  Google Scholar 

  41. Sundqvist E, Buck D, Warnke C, Albrecht E, Gieger C,Khademi M, et al. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants. PLoS Pathog 2014; 10:e1004084.

    Google Scholar 

  42. Juhela S, Hyoty H, Hinkkanen A, Elliott JF, Roivainen M, Kulmala P, et al. T cell responses to enterovirus antigens and to beta-cell autoantigens in unaffected children positive for IDDM-associated autoantibodies. J Autoimmun 1999; 12:269–278.

    CAS  PubMed  Google Scholar 

  43. Roivainen M. Enteroviruses: new findings on the role of enteroviruses in type 1 diabetes. Int J Biochem Cell Biol 2006; 38:721–725.

    CAS  PubMed  Google Scholar 

  44. Atkinson M. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 1994; 94:2125–2212.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Foulis AK. A search for evidence of viral infection in pancreases of newly diagnosed patients with IDDM Diabetologia 1997; 40:53–61.

    CAS  PubMed  Google Scholar 

  46. Centers for Disease Control and Prevention. Non-polio eneroviruses. Prevention & treatment. 2016. Available at: https://www.cdc.gov/non-polio-enterovirus/about/prevention-treatment.html. [Accessed 23 April 2017].

  47. Rotbart HA. Antiviral therapy for enteroviruses and rhinoviruses. Antivir Chem Chemother 2000; 11:261–271.

    CAS  PubMed  Google Scholar 

  48. McKinney RE, Katz SL, Wilfert CM. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev Infect Dis 1987; 9:334–356.

    PubMed  Google Scholar 

  49. Abzug MJ, Levin MJ, Rotbart HA. Profile of enterovirus disease in the first two weeks of life. Pediatric Infect Dis J 1993; 12:820–824.

    CAS  Google Scholar 

  50. Yee PTI, Poh CL. Development of novel vaccines against enterovirus-71. Viruses 2016; 8:1.

    Google Scholar 

  51. Liang Z, Wang J. EV71 vaccine, an invaluable gift for children. Clin Trans Immunol 2014; 3:e28.

    Google Scholar 

  52. Liu L, Mo Z, Liang Z, Zhang Y, Li R, Ong KC, et al. Immunity and clinical efficacy of an inactivated enterovirus 71 vaccine in healthy Chinese children: a report of further observations. BMC Med 2015; 13:226.

    PubMed  PubMed Central  Google Scholar 

  53. Oikarinen M, Tauriainen S, Oikarinen S, Honkanen T, Collin P, Rantala I, et al. Enterovirus infections and type 1 diabetes mellitus: is there any relationship? J Venom Anim Toxins Incl Trop Dis 2012; 18:3–15.

    Google Scholar 

  54. Kyvik KO, Nystrom L, Gorus F, Songini M, Oestman J, Castell C, et al. The epidemiology of type 1 diabetes mellitus is not the same in young adults as in children. Diabetologia. 2004; 47:377–384.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idris Abdullahi Nasir MSc.

Additional information

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, I.A., Emeribe, A.U., Shuwa, H.A. et al. Type 1 diabetes mellitus and enterovirus linkage: search for associated etiopathology. Egypt J Intern Med 29, 93–99 (2017). https://doi.org/10.4103/ejim.ejim_25_17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ejim.ejim_25_17

Keywords