Skip to main content
  • Original article
  • Open access
  • Published:

Noninvasive predictors of large esophageal varices: is there an emerging role of aspartate aminotransferase-to-platelet ratio index in hepatocellular carcinoma?

Abstract

Background and aim

Variceal size has been identified to be closely related to variceal bleeding. Repeated endoscopic examinations have a great burden on endoscopic units and cost-implication issues. Our aim was to evaluate the role of AST to platelet ratio index (APRI) in predicting the existence of large esophageal varices (EV) in hepatitis C virus-related liver cirrhotic patients.

Patients and methods

Seventy four patients with liver cirrhosis were prospectively recruited. Laboratory data, CTP, MELD and APRI, also ultrasonographic and endoscopic findings are performed and investigated whether associated with the size and bleeding of EV.

Results

Patients were divided into two groups; group 1 with small varices and group 2 with large varices. Group 2 had significantly prolonged prothrombin time, splenomegaly, ascites, higher Child score compared to group 1. CTP was associated with variceal bleeding (P = 0.028). While APRI was a poor predictor both for the presence of LVs and bleeding yet it revealed favorable results with bleeding EVs in patients with HCC with AUC (0.61). APRI was a good predictor for the presence of HCC and number of focal lesions with AURC (0.651, 0.61 respectively).

Conclusion

Splenomegaly, CTP, ascites could be used as noninvasive predictors for large EVs. However, at the moment, these tests could not substitute for endoscopy. Although APRI is a poor predictor for the size and bleeding of EV, yet it might have a role in prediction of HCC and number of focal lesions.

References

  1. Jensen DM. Endoscopic screening for varices in cirrhosis: findings, implications, and outcomes. Gastroenterology 2002; 122: 1620–1630.

    Article  Google Scholar 

  2. Jalan R, Hayes PC. UK guidelines on the management of variceal haemorrhage in cirrhotic patients. British Society of Gastroenterology. Gut 2000; 46: (Suppl 3–4): III1–III15.

    PubMed  Google Scholar 

  3. Amico GD, Morabito A. Noninvasive markers of esophageal varices: another round, not the last. Hepatology 2004; 39: 30–34.

    Article  Google Scholar 

  4. Thomopoulos KC, Labropoulou-Karatza C, Mimidis KP, Katsakoulis EC, Iconomou G, Nikolopoulou VN. Non-invasive predictors of the presence of large oesophageal varices in patients with cirrhosis. Dig Liver Dis 2003; 35: 473–478.

    Article  CAS  Google Scholar 

  5. Giannini EG, Botta F, Borro P, Dulbecco P, Testa E, Mansi C, et al. Application of the platelet count/spleen diameter ratio to rule out the presence of oesophageal varices in patients with cirrhosis: a validation study based on follow-up. Dig Liver Dis 2005; 37: 779–785.

    Article  CAS  Google Scholar 

  6. Gorka W, al Mulla A, al Sebayel M, Altraif I, Gorka TS. Qualitative hepatic venous Doppler sonography versus portal flowmetry in predicting the severity of esophageal varices in hepatitis C cirrhosis. Am J Roentgenol 1997; 169: 511–515.

    Article  CAS  Google Scholar 

  7. Ismail FW, Shah HA, Hamid S, Abbas Z, Abid S, Mumtaz K, Jafri W. Noninvasive predictors of large varices in patients hospitalized with gastroesophageal variceal hemorrhage. Hepatol Int 2008; 2: 124–128.

    Article  Google Scholar 

  8. Giannini EG, Zaman A, Kreil A, Floreani A, Dulbecco P, Testa E, et al. Platelet count/spleen diameter ratio for the noninvasive diagnosis of esophageal varices: results of a multicenter, prospective, validation study. Am J Gastroenterol 2006; 101: 2511–2519.

    Article  Google Scholar 

  9. Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38: 518–526.

    Article  Google Scholar 

  10. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973; 60: 646–649.

    Article  CAS  Google Scholar 

  11. Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000; 31: 864–871.

    Article  CAS  Google Scholar 

  12. North Italian Endoscopic Club for the Study and Treatment of Esophageal Varices. Prediction of the first variceal hemorrhage in patients with cirrhosis of the liver and esophageal varices. A prospective multicenter study. N Engl J Med 1988; 319: 983–989.

    Article  Google Scholar 

  13. Goh SH, Tan WP, Lee SW. Clinical predictors of bleeding esophageal varices in the ED. Am J Emerg Med 2005; 23: 531–535.

    Article  Google Scholar 

  14. Schepis F, Cammà C, Niceforo D, Magnano A, Pallio S, Cinquegrani M, et al. Which patients with cirrhosis should undergo endoscopic screening for esophageal varices detection? Hepatology 2001; 33: 333–338.

    Article  CAS  Google Scholar 

  15. Hong WD, Dong LM, Jiang ZC, Zhu QH, Jin SQ. Prediction of large esophageal varices in cirrhotic patients using classification and regression tree analysis. Clinics (Sao Paulo) 2011; 66: 119–124.

    Article  Google Scholar 

  16. Amico DG, Garcia-Tsao G, Calés P, Escorsell P, Nevens A, Cestari F, et al. Diagnosis of portal hypertension: how and when. In: De Franchis R, editor Proceedings of the third baveno international consensus workshop on definitions, methodology and therapeutic strategies. Oxford: Blackwell Science; 2001. p. 36–63.

  17. Espanol I, Gallego A, Enriquez J, Rabella N, Lerma E, Hernandez A, Pujol-Moix N. Thrombocytopenia associated with liver cirrhosis and hepatitis C viral infection: role of thrombopoietin. Hepatogastroenterology 2000; 47: 1404–1406.

    CAS  PubMed  Google Scholar 

  18. Qamar AA, Grace ND, Groszmann RJ, Garcia-Tsao G, Bosch J, Burroughs AK, et al. Platelet count is not a predictor of the presence or development of gastroesophageal varices in cirrhosis. Hepatology 2008; 47: 153–159.

    Article  Google Scholar 

  19. Gulzar GM, Zargar SA, Jalal S, Alaie MS, Javid G, Suri PK, et al. Correlation of hepatic venous pressure gradient with variceal bleeding, size of esophageal varices, etiology, ascites and degree of liver dysfunction in cirrhosis of liver. Indian J Gastroenterol 2009; 28: 59–61.

    Article  Google Scholar 

  20. Emam E, Ramadan A, Badway M, Atia H, Abo Warda MH, Gawish HH. Prediction of oesophageal varices in patients with compensated cirrhosis: a novel scoring system. Arab J Gastroenterol 2009; 10: 129–134.

    Article  CAS  Google Scholar 

  21. Garcia-Tsao G, Friedman S, Iredale J, Pinzani M. Now there are many (stages) where there once was one: in search of a pathophysiological classification of cirrhosis. Hepatology 2010; 51: 1445–1449.

    Article  Google Scholar 

  22. Tafarel JR, Tolentino LH, Correa LM, Bonilha DR, Piauilino P, Martins FP, et al. Prediction of esophageal varices in hepatic cirrhosis by noninvasive markers. Eur J Gastroenterol Hepatol 2011; 23: 754–758.

    Article  Google Scholar 

  23. Sumon SM, Sutradhar SR, Chowdhury M, Khan NA, Uddin MZ, Hasan MI, et al. Relation of different grades of esophageal varices with Child–Pugh classes in cirrhosis of liver. Mymensingh Med J 2013; 22: 37–41.

    CAS  PubMed  Google Scholar 

  24. Cherian JV, Deepak N, Ponnusamy RP, Somasundaram A, Jayanthi V. Non-invasive predictors of esophageal varices. Saudi J Gastroenterol 2011; 17: 64–68.

    Article  Google Scholar 

  25. Burton JR, Liangpun sakul S, Lapidus J, Giannini E, Chalasani N, Zaman A. Validation of a multivariate model predicting presence and size of varices. J Clin Gastroenterol 2007; 41: 609–615.

    Article  Google Scholar 

  26. Madhotra R, Mulcahy HE, Willner I, Reuben A. Prediction of esophageal varices in patients with cirrhosis. J Clin Gastroenterol 2002; 34: 81–85.

    Article  CAS  Google Scholar 

  27. Bolondi L, Zironi G, Gaiani S, Li Bassi S, Benzi G, Barbara L. Caliber of splenic and hepatic arteries and spleen size in cirrhosis of different etiology. Liver 1991; 11: 198–205.

    Article  CAS  Google Scholar 

  28. Martin J, Khatri G, Gopal P, Singal AG. Accuracy of ultrasound and noninvasive markers of fibrosis to identify patients with cirrhosis. Dig Dis Sci 2015; 60: 1841–1847.

    Article  Google Scholar 

  29. Stefanescu H, Grigorescu M, Lupsor M, Procopet B Maniu A, Badea R. Spleen stiffness measurement using Fibroscan for the noninvasive assessment of esophageal varices in liver cirrhosis patients, J Gastroenterol Hepatol 2011; 26: 164–170.

    Google Scholar 

  30. Rye K, Scott R, Mortimore G, Lawson A, Austin A, Freeman J. Towards noninvasive detection of oesophageal varices. Int J Hepatol 2012; 2012: 343591.

    Article  Google Scholar 

  31. Zambam de Mattos A, Alves de Mattos A, Daros LF, Musskopf MI. Aspartate aminotransferase-to-platelet ratio index (APRI) for the non-invasive prediction of esophageal varices. Ann Hepatol 2013; 12: 810–814.

    Article  CAS  Google Scholar 

  32. Sanyal AJ, Fontana RJ, Di Bisceglie AM, Everhart JE, Doherty MC, Everson GT, et al. The prevalence and risk factors associated with esophageal varices in subjects with hepatitis C and advanced fibrosis. Gastrointest Endosc 2006; 64: 855–864.

    Article  Google Scholar 

  33. Castéra L, Le Bail B, Roudot-Thoraval F, Bernard PH, Foucher J, Merrouche W, et al. Early detection in routine clinical practice of cirrhosis and oesophageal varices in chronic hepatitis C: comparison of transient elastography (FibroScan) with standard laboratory tests and non-invasive scores. J Hepatol 2009; 50: 59–68.

    Article  Google Scholar 

  34. Kao WY, Chiou YY, Hung HH, Chou YH, Su CW, Wu JC, et al. Risk factors for long-term prognosis in hepatocellular carcinoma after radiofrequency ablation therapy: the clinical implication of aspartate aminotransferase-platelet ratio index. Eur J Gastroenterol Hepatol 2011; 23: 528–536.

    CAS  PubMed  Google Scholar 

  35. Hann HW, Wan S, Lai Y, Hann RS, Myers RE, Patel F, et al. Aspartate aminotransferase to platelet ratio index as a prospective predictor of hepatocellular carcinoma risk in patients with chronic hepatitis B virus infection. J Gastroenterol Hepatol 2015; 30: 131–138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Sedrak.

Additional information

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedrak, H., Khalifa, R., Elkafrawy, A. et al. Noninvasive predictors of large esophageal varices: is there an emerging role of aspartate aminotransferase-to-platelet ratio index in hepatocellular carcinoma?. Egypt J Intern Med 27, 139–146 (2015). https://doi.org/10.4103/1110-7782.174935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/1110-7782.174935

Keywords