Skip to main content

Biopsy of the pancreas: the predictive value and therapeutic impact on autoimmune diabetes

Abstract

Diabetes mellitus is by definition an end-stage organ failure. Type 1 diabetes mellitus is an autoimmune disease. Autoinflammatory infiltrate appears to characterize the insulitis associated with type 1 diabetes mellitus. In recent times, a comprehensive composition of peri-islet capsules and their basement membrane (BM) has been described. Lymphocytic infiltration around the islets without invasion of the BM is the first step in disease induction (nondestructive insulitis phase). Invasion of the BM by leukocytic infiltration (destructive insulitis phase) occurs over a period of several years, offering good window for therapeutic intervention. Clinical symptoms appear only when 70–90% of β-cell mass are destroyed. These data emphasize on the importance of identification and classification of such pathologic features by performing a biopsy of the pancreas, along with histoimmunochemistry analysis at the prehyperglycemic stage in a high-risk, genetically predisposed, autoimmune-suspected patient, which may at least in part help in achieving new therapeutic approaches and halting the progression to end-stage pancreatic disease known as diabetes mellitus. In this review, we emphasize the predictive role biopsy of the pancreas can have, by building up a solid gold standard tool in the diagnosis, staging, and therapeutic follow-up of autoimmune diabetes mellitus.

References

  1. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11:98–107.

    Article  CAS  PubMed  Google Scholar 

  2. Brooks-Worrell B, Palmer JP. Is diabetes mellitus a continuous spectrum?. Clin Chem 2011; 57:158–161.

    Article  CAS  PubMed  Google Scholar 

  3. Brooks-Worrell BM, Reichow JL, Goel A, Ismail H, Palmer JP. Identification of autoantibody-negative autoimmune type 2 diabetic patients. Diabetes Care 2011; 34:168–173.

    Article  PubMed  Google Scholar 

  4. Eisenbarth GS. Banting Lecture 2009: an unfinished journey: molecular pathogenesis to prevention of type 1A diabetes. Diabetes 2010; 59:759–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L Zhang, GS Eisenbarth. Prediction and prevention of type 1 diabetes mellitus. J Diabetes 2011; 3:48–53.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang XM, Wang HY, Luo YY, Ji LN. HLA-DQ, DR allele polymorphism of type 1 diabetes in the Chinese population: a meta-analysis. Chin Med J (Engl) 2009; 122:980–986.

    Google Scholar 

  7. Ziegler AG, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 1999; 48:460–468.

    Article  CAS  PubMed  Google Scholar 

  8. Barker JM, Barriga KJ, Yu L, Miao D, Erlich HA, Norris JM, et al. Diabetes Autoimmunity Study in the Young Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J Clin Endocrinol Metab 2004; 89:3896–3902.

    Article  CAS  PubMed  Google Scholar 

  9. Bottazzo GF, Florin-Christensen A, Doniach D. Isletcell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 1974; 2:1279–1283.

    Article  CAS  PubMed  Google Scholar 

  10. Verge CF, Gianani R, Kawasaki E, Yu L, Pietropaolo M, Jackson RA, et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 1996; 45:926–933.

    Article  CAS  PubMed  Google Scholar 

  11. Orban T, Sosenko JM, Cuthbertson D, Krischer JP, Skyler JS, Jackson R, et al. Diabetes Prevention Trial-Type 1 Study Group Pancreatic islet autoantibodies as predictors of type 1 diabetes in the diabetes prevention trial-type 1. Diabetes Care 2009; 32:2269–2274.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu L, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K, Eisenbarth GS. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci USA 2000; 97:1701–1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91:79–118.

    Article  PubMed  CAS  Google Scholar 

  14. Langerhans P. Intoduction of “Microscopic Anatomy”, Berlin, Germany: Gustaf Lange; 1869.

    Google Scholar 

  15. Sleisenger & Fordtran’s gastrointestinal and liver disease pathophysiology, diagnosis, management (9th ed.): ISBN: 978-1-4160-619-2 (2010). By saunders of Elsevier Inc.

  16. Pérez-Armendariz M, Roy C, Spray DC, Bennett MV. Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophsical J 1991; 59:76–92.

    Article  Google Scholar 

  17. Yurchenco PD, Patton BL. Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des 2009; 15:1277–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinkse GG, Bouwman WP, Jiawan-Lalai R, Terpstra OT, Bruijn JA, de Heer E. Integrin signaling via RGD peptides and anti-beta1 antibodies confers resistance to apoptosis in islets of Langerhans. Diabetes 2006; 55:312–317.

    Article  CAS  PubMed  Google Scholar 

  19. Jones PL, Jones FS. Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 2000; 19: 581–596.

    Article  CAS  PubMed  Google Scholar 

  20. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464(7293): 1293–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Deijnen JH, Hulstaert CE, Wolters GH, van Schilfgaarde R. Significance of the peri-insular extracellular matrix for islet isolation from the pancreas of rat, dog, pig, and man. Cell Tissue Res 1992; 267:139–146.

    Article  PubMed  Google Scholar 

  22. Geutskens SB, Homo-Delarche F, Pleau JM, Durant S, Drexhage HA, Savino W. Extracellular matrix distribution and islet morphology in the early postnatal pancreas: anomalies in the non-obese diabetic mouse. Cell Tissue Res 2004; 318:579–589.

    Article  CAS  PubMed  Google Scholar 

  23. Virtanen I, Banerjee M, Palgi J, Korsgren O, Lukinius A, Thornell LE, et al. Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia 2008; 51:1181–1191.

    Article  CAS  PubMed  Google Scholar 

  24. Korpos É, Kadri N, Kappelhoff R, Wegner J, Overall CM, Weber E, et al. The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 2013; 62:531–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Otonkoski T, Banerjee M, Korsgren O, Thornell LE, Virtanen I. Unique basement membrane structure of human pancreatic islets: implications for beta-cell growth and differentiation. Diabetes Obes Metab 2008; 10(Suppl 4):119–127

    Article  PubMed  Google Scholar 

  26. Irving-Rodgers HF, Ziolkowski AF, Parish CR, Sado Y, Ninomiya Y, Simeonovic CJ, Rodgers RJ. Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis. Diabetologia 2008; 51:1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Valli MB, Serafino A, Crema A, Bertolini L, Manzin A, Lanzilli G, et al. Transmission in vitro of hepatitis C virus from persistently infected human B-cells to hepatoma cells by cell-to-cell contact. J Med Virol 2006; 78:192–201.

    Article  CAS  PubMed  Google Scholar 

  28. Wang RN, Paraskevas S, Rosenberg L. Characterization of integrin expression in islets isolated from hamster, canine, porcine, and human pancreas. J Histochem Cytochem 1999; 47:499–506.

    Article  CAS  PubMed  Google Scholar 

  29. Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol 2006; 6:633–643.

    Article  CAS  PubMed  Google Scholar 

  30. Ishida H. Peritoneoscopy and pancreas biopsy in the diagnosis of pancreatic diseases. Gastrointest Endosc 1983; 29:211–218.

    Article  CAS  PubMed  Google Scholar 

  31. Imagawa A, Hanafusa T, Tamura S, Moriwaki M, Itoh N, Yamamoto K, et al. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes 2001; 50:1269–1273.

    Article  CAS  PubMed  Google Scholar 

  32. Itoh N, Hanafusa T, Miyazaki A, Miyagawa J, Yamagata K, Yamamoto K, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993; 92:2313–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM Study Group. N Engl J Med 2000; 342:301–307.

    Article  CAS  Google Scholar 

  34. Imagawa A, Hanafusa T, Itoh N, Waguri M, Yamamoto K, Miyagawa J, et al. Immunological abnormalities in islets at diagnosis paralleled further deterioration of glycaemic control in patients with recent-onset type I (insulin-dependent) diabetes mellitus. Diabetologia 1999; 42:574–578.

    Article  CAS  PubMed  Google Scholar 

  35. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997; 20:1183–1197.

    Article  Google Scholar 

  36. Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A proposal of three distinct subtypes of type 1 diabetes mellitus based on clinical and pathological evidence. Ann Med 2000; 32:539–543.

    Article  CAS  PubMed  Google Scholar 

  37. Papaccio G, Latronico MV, Pisanti FA, Federlin K, Linn T. Adhesion molecules and microvascular changes in the nonobese diabetic (NOD) mouse pancreas. An NO-inhibitor (L-NAME) is unable to block adhesion inflammation-induced activation. Autoimmunity 1998; 27:65–77.

    CAS  PubMed  Google Scholar 

  38. Papaccio G, Pisanti FA, Montefiano RD, Graziano A, Latronico MV. Th1 and Th2 cytokines exert regulatory effects upon islet microvascular areas in the NOD mouse. J Cell Biochem 2002; 86:651–664.

    Article  CAS  PubMed  Google Scholar 

  39. Yadav R, Larbi KY, Young RE, Nourshargh S. Migration of leukocytes through the vessel wall and beyond. Thromb Haemost 2003; 90:598–606.

    Article  CAS  PubMed  Google Scholar 

  40. Barsoum RS. Hepatitis C virus: from entry to renal injury–facts and potentials. Nephrol Dial Transplant 2007; 22:1840–1848.

    Article  PubMed  Google Scholar 

  41. Masciopinto F, Giovani C, Campagnoli S, Galli-Stampino L, Colombatto P, Brunetto M, et al. Association of hepatitis C virus envelope proteins with exosomes. Eur J Immunol 2004; 34:2834–2842.

    Article  CAS  PubMed  Google Scholar 

  42. Ondr JK, Pham CT. Characterization of murine cathepsin W and its role in cell-mediated cytotoxicity. J Biol Chem 2004; 279:27525–27533.

    Article  CAS  PubMed  Google Scholar 

  43. Hsing LC, Kirk EA, McMillen TS, Hsiao SH, Caldwell M, Houston B, et al. Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. J Autoimmun 2010; 34:96–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Nassar MD.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassar, W., Mostafa, M.A. Biopsy of the pancreas: the predictive value and therapeutic impact on autoimmune diabetes. Egypt J Intern Med 27, 48–52 (2015). https://doi.org/10.4103/1110-7782.159449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/1110-7782.159449

Keywords