Skip to main content
  • Review Article
  • Open access
  • Published:

Thyroxine mimetics

Abstract

Thyroid hormones influence heart rate, serum lipids, metabolic rate, body weight, and multiple aspects of lipid, carbohydrate, protein, and mineral metabolism. Although increased thyroid hormone levels can improve serum lipid profiles and reduce fat, these positive effects are counterbalanced by the harmful effects on the heart, muscle, and bone. Thus, attempts to use thyroid hormones for cholesterol-lowering and weight loss purposes have so far been limited. However, over the past decade, thyroid hormone analogs that are capable of uncoupling the beneficial effects from the deleterious effects have been developed. Such drugs could serve as powerful new tools to address two of the largest medical problems, namely atherosclerosis and obesity. Aggressive reduction in LDL-cholesterol by the use of statins is a cornerstone of preventive cardiovascular risk, but additional therapies to prevent atherosclerosis and its clinical sequelae are still needed. Thyromimetics selective for the liver or the thyroid hormone receptor isoform β1 constitute a novel approach to treat dyslipidemia. In preclinical studies, selective thyromimetics were clearly shown to reduce plasma cholesterol and protect from atherosclerosis through the upregulation of hepatic LDL receptor and promotion of the so-called reverse cholesterol transport. Notably, there is the first evidence from on-going clinical trials that selective thyromimetics may reduce plasma cholesterol in humans also. Most importantly, thyromimetics has a synergistic action when used in combination with 3-hydroxy-3- methylglutaryl CoA reductase inhibitors. Animal data have further suggested that thyromimetics might be useful in the treatment of obesity, hepatic steatosis, and atherosclerosis.

References

  1. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, et al. The c-erb- a protein is a high-affinity receptor for thyroid hormone. Nature 1986; 324: 635–640.

    Article  CAS  Google Scholar 

  2. Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184–193.

    CAS  PubMed  Google Scholar 

  3. Cheng SY, Leonard JL, Davis, PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 2010; 31: 139–170.

    Article  CAS  Google Scholar 

  4. Jones I, Ng L, Liu H, Forrest D. An intron control region differentially regulates expression of thyroid hormone receptor beta2 in the cochlea, pituitary, and cone photoreceptors. Mol Endocrinol 2007; 21: 1108–1119.

    Article  CAS  Google Scholar 

  5. Bradley DJ, Towle HC, Young WS. Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci 1992; 12: 2288–2302.

    Article  CAS  Google Scholar 

  6. Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, et al. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005; 146: 2864–2871.

    Article  CAS  Google Scholar 

  7. Mason RL, Hunt HM, Hurxthal L. Blood cholesterol values in hyperthyroidism and hypothyroidism. N Engl J Med 1930; 203: 1273–1278.

    Article  CAS  Google Scholar 

  8. Galioni EF, Gofman JW, Guzvich P, Pouteau J, Rubinger JH, Strisower B. Long-term effect of dried thyroid on serum-lipoprotein and serum-cholesterol levels. Lancet 1957; 272: 120–123.

    CAS  PubMed  Google Scholar 

  9. The coronary drug project. Findings leading to further modifications of its protocol with respect to dextrothyroxine. The coronary drug project research group. JAMA 1972; 220: 996–1008.

    Google Scholar 

  10. Baxter JD, Webb P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov 2009; 8: 308–320.

    Article  CAS  Google Scholar 

  11. Webb P. Thyroid hormone receptor and lipid regulation. Curr Opin Investig Drugs 2010; 11: 1135–1142.

    CAS  PubMed  Google Scholar 

  12. Pramfalk C, Pedrelli M, Parini P. Role of thyroid receptor beta in lipid metabolism. Biochim Biophys Acta 2010; 33: 230–245.

    Google Scholar 

  13. Leeson PD, Emmett JC, Shah VP, Showell GA, Novelli R, Prain HD, et al. Selective thyromimetic. Cardiac-sparing thyroid hormone analogues containing 3´-arylmethyl substituents. J Med Chem 1989; 32: 320–336.

    CAS  PubMed  Google Scholar 

  14. Pennock GD, Raya TE, Bahl JJ, Goldman S, Morkin E. Combination treatment with captopril and the thyroid hormone analogue 3,5-diiodothyropropionic acid. A new approach to improving left ventricular performance in heart failure. Circulation 1993; 88: 1289–1298.

    CAS  PubMed  Google Scholar 

  15. Tancevski I, Rudling M, Eller P. Thyromimetics: a journey from bench to bed side. Pharmacol Ther 2011; 31: 33–39.

    Article  Google Scholar 

  16. Talukder MA, Yang F, Nishijima Y, Chen CA, Xie L, Mahamud SD, et al. Detrimental effects of the thyroid hormone analog, DITPA, in the mouse heart: increased mortality with in vivo acute myocardial ischemia/reperfusion. Am J Physiol Heart Circ Physiol 2010; 300: H702–H711.

    Article  Google Scholar 

  17. Ladenson PW, Kristensen JD, Ridgway EC, Olsson AG, Carlsson B, Klein I, et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N Engl J Med 2010; 362: 906–916.

    Article  CAS  Google Scholar 

  18. Ladenson PW, McCarren M, Morkin E, Edson RG, Shih MC, Warren SR, et al. Effects of the thyromimetic agent diiodothyropropionic acid on body weight, body mass index, and serum lipoproteins: a pilot prospective, randomized, controlled study. J Clin Endocrinol Metab 2010; 95: 1349–1354.

    Article  CAS  Google Scholar 

  19. Ye L, Li YL, Mellstrom K, Mellin C, Bladh LG, Koehler K, et al. Thyroid receptor ligands. 1. Agonist ligands selective for the thyroid receptor beta1. J Med Chem 2003; 46: 1580–1588.

    CAS  PubMed  Google Scholar 

  20. Berkenstam A, Kristensen J, Mellstrom K, Carlsson B, Malm J, Rehnmark S, et al. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci USA 2008; 105: 663–667.

    Article  CAS  Google Scholar 

  21. Koch L. Lipids: eprotirome shows promise as a novel way to target dyslipidemia. Nat Rev Endocrinol 2010; 6: 354.

    Article  Google Scholar 

  22. Shiohara H, Nakamura T, Kikuchi N, Ozawa T, Nagano R, Matsuzawa A. Discovery of novel indane derivatives as liver –selective thyroid hormone receptorsβ (TRβ) agonist for the treatment of dyslipidemia. Bioorg Med Chem 2012; 20: 3622–3634.

    Article  CAS  Google Scholar 

  23. Lin VW, Klepp HM, Hanley RM. Sobetirome is a TRβ - and liver-selective thyromimetic that can effect substantial LDL-C lowering without significant changes in heart rate or the thyroid axis in euthyroid men. San Francisco, USA: The Endocrine Society Annual Meeting ENDO; 2008. OR36–OR33.

  24. Villicev CM, Freitas FR, Aoki MS, Taffarel C, Scanlan TS, Moriscot AS, et al. Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol 2007; 193: 21–29.

    Article  CAS  Google Scholar 

  25. Cable EE, Finn PD, Stebbins JW, Hou J, Ito BR, van Poelje PD, et al. Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology 2009; 49: 407–417.

    Article  CAS  Google Scholar 

  26. Boyer SH, Jiang H, Jacintho JD, Reddy MV, Li H, Li W, et al. Synthesis and biological evaluation of a series of liver-selective phosphonic acid thyroid hormone receptor agonists and their prodrugs. J Med Chem 2008; 51: 7075–7093, 2008.

    Article  CAS  Google Scholar 

  27. Erion MD, Cable EE, Ito BR, Jiang H, Fujitaki JM, Finn PD, et al. Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci USA 2007; 104: 15490–15495.

    Article  CAS  Google Scholar 

  28. Trost SU, Swanson E, Gloss B, Wang-Iverson DB, Zhang H, Volodarsky T, et al. The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 2000; 141: 3057–3064.

    Article  CAS  Google Scholar 

  29. Tancevski I, Wehinger A, Demetz E, Hoefer J, Eller P, Huber E, et al. The thyromimetic T-0681 protects from atherosclerosis. J Lipid Res 2009; 50: 938–944.

    Article  CAS  Google Scholar 

  30. Tancevski I, Demetz E, Eller P, Duwensee K, Hoefer J, Heim C, et al. The liver-selective thyromimetic T-0681 influences reverse cholesterol transport and atherosclerosis development in mice. PLoS One 2010; 5: e8722.

    Article  Google Scholar 

  31. Johansson L, Rudling M, Scanlan TS, Lundasen T, Webb P, Baxter J, et al. Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc Natl Acad Sci USA 2005; 102: 10297–10302.

    Article  CAS  Google Scholar 

  32. Perra A, Simbula G, Simbula M, Pibiri M, Kowalik MA, Sulas P, et al. Thyroid hormone (T3) and TRbeta agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J 2008; 22: 2981–2989.

    Article  CAS  Google Scholar 

  33. Goldman S, McCarren M, Morkin E, Ladenson PW, Edson R, Warren S, et al. DITPA(3,5-diiodothyropropionic acid), a thyroidhormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation 2009; 119: 3093–3100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randa F. Salam MD.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Salam, R.F. Thyroxine mimetics. Egypt J Intern Med 25, 171–176 (2013). https://doi.org/10.4103/1110-7782.124969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/1110-7782.124969

Key Words