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Abstract 

Background Nanoplastics (NPs) have emerged as significant environmental pollutants, raising concerns due to their 
ubiquitous presence and potential adverse effects on human health. The migration and fate of NPs in the envi-
ronment are subjects of intense study, with human exposure pathways expanding through ingestion, inhalation, 
and dermal contact.

Body Studies indicate that NPs can infiltrate the cardiovascular system, potentially causing adverse effects. Mechanis-
tic insights from in vitro and animal studies suggest that oxidative stress, inflammation, apoptosis, and mitochondrial 
dysfunction contribute to nanoplastic-induced cardiovascular toxicity. Animal models demonstrate altered heart rate, 
myocardial fibrosis, and dysfunction following NPs exposure, with specific adverse effects observed in cardiac valves 
and mitochondrial structure. Clinical studies provide further evidence of NPs accumulation in cardiovascular tissues, 
with implications for cardiovascular pathologies such as atherosclerosis and myocardial infarction. Notably, patients 
with higher levels of nanoplastics in carotid plaque exhibit an increased risk of adverse cardiovascular outcomes.

Conclusion However, challenges in studying nanoplastics persist, including methodological limitations, ethical con-
siderations, and the need for standardized detection methods. Addressing these challenges requires interdisciplinary 
collaboration, innovative research approaches, and robust regulatory measures to mitigate NPs pollution and protect 
cardiovascular health.
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Introduction
Microplastics (MPs) are among the newly recognized 
persistent organic pollutants (POPs), emerging as critical 
environmental concerns in recent years [1]. Described by 
Thompson et al. in 2004 as plastic debris less than 5 mm 
in diameter [2], MPs have dual origins: degradation of 
larger plastic debris and pre-production pellets used for 
the already limited size [3]. Environmental factors such 
as physical processes, chemical weathering, and biologi-
cal activity can further degrade MPs into even smaller 
nanoparticles (NPs) ranging from 1 to 1000 nm. Due to 
their diminutive size, extensive surface area, and high 
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tissue affinity, these NPs are readily ingested by organ-
isms, potentially disrupting various biological processes 
[4–6].

Currently, microplastic (nano)plastics (MNPs) rep-
resent a novel form of environmental pollution, garner-
ing considerable research attention. Their migration and 
ultimate fate in nature are subjects of intense study. Of 
greater concern is their impact on human health; some 
studies suggest possible adverse outcomes [7–9]. As envi-
ronmental concentrations of MNPs rise, human exposure 
pathways expand, with inhalation, ingestion, and dermal 
penetration identified as primary routes of entry into the 
body [7]. While a significant portion of current research 
focuses on the health hazards associated with ingest-
ing NPs from aquatic sources, such as drinking water 
and seafood [8, 9], the complexity of human exposure 
is increasing [10]. For example, NPs have been found in 
lakes, rivers, and even treated drinking water [10, 11], 
potentially leading to human ingestion post-consump-
tion [12]. Moreover, marine organisms like fish, shellfish, 
and crustaceans have been shown to accumulate MNPs, 
thus entering the human diet upon consumption [13, 14]. 
Notably, MNPs have been detected in seemingly unre-
lated food items such as table salt and beer [15], indicat-
ing their potential presence in a variety of foods.

Inhalation serves as another exposure route for NPs, 
originating from various sources like clothing fibers, 
building materials, 3D printing, tire wear, waste incin-
eration, and urban dust [16]. Their small size allows easy 
airborne transport, with oceanic microplastics also con-
tributing to atmospheric dispersion [17, 18]. COVID-19 
mask usage has intensified respiratory exposure [19]. 
While ingestion is primary, dermal absorption is notable 
[20, 21]. Research confirms MNPs’ translocation from 
the digestive tract and lungs to various organs, includ-
ing the heart [7]. These multiple pathways underscore the 
significant health risks, demanding further investigation.

Cardiovascular disease (CVD) remains a leading 
global health concern, with air pollution being a signifi-
cant contributing factor. Investigations indicate that air 
particulate matter (PM) negatively impacts cardiovas-
cular activity, leading to vascular dysfunction, hyper-
tension, and myocardial infarction [22, 23]. Oxidative 
stress induced by PM exposure is believed to play a key 
role in this process [22–24]. Emerging evidence suggests 
that NPs, as a novel environmental pollutant, also pose 
a threat to cardiovascular health [23]. A growing body 
of research indicates the heart as a potential target site 
for NP accumulation, potentially establishing it as a new 
cardiovascular risk factor [25]. Studies using mammalian 
models have demonstrated that nanoparticle exposure 
can adversely affect cardiac function [7]. The proposed 
mechanism involves interactions between NPs and ion 

channels within cardiac muscle cells (cardiomyocytes), 
ultimately disrupting their function [7]. While the poten-
tial for NPs to impact the cardiovascular system is gain-
ing recognition, current research primarily focuses on 
elucidating the underlying mechanisms. The broader 
impacts of NP exposure on various aspects of cardio-
vascular health remain largely unexplored. This study 
aims to contribute to this critical area by providing new 
insights into the cardiotoxic potential of NPs.

Methodology
Literature search strategy
A literature search was conducted to identify relevant 
studies examining the cardiovascular hazards of nano-
plastics (Table  1). Electronic databases including Pub-
Med/MEDLINE, Scopus, Web of Science, and Google 
Scholar were searched using relevant keywords and Med-
ical Subject Headings (MeSH) terms. Key search terms 
included “nanoplastics,” “microplastics,” “cardiovascular 
effects,” “heart disease,” and related variations. Boolean 
operators (AND, OR) were utilized to refine search 
queries and broaden the scope of relevant articles. The 
search was limited to articles published in English up to 
February 2024 to ensure the currency of the review.

Study selection criteria
Studies were included in the review if they met the fol-
lowing inclusion criteria:

– Published in peer-reviewed journals.
– Investigated the cardiovascular effects of nanoplas-

tics.
– Provided relevant data or insights into the mecha-

nisms underlying nanoplastic-induced cardiovascular 
toxicity.

– Included experimental studies and observational 
studies.

The exclusion criteria were as follows:

– Non-English language articles.
– Studies focusing solely on other environmental pol-

lutants without specific mention of nanoplastics.
– Studies lacking relevance to cardiovascular health or 

lacking mechanistic insights into nanoplastic toxicity.
– Reviews, metanalyses, and conference papers.

Data extraction and synthesis
Two reviewers independently performed data extrac-
tion to ensure accuracy and reliability. Any discrepan-
cies between reviewers were resolved through discussion 
and consensus. Following data extraction, a narrative 
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synthesis approach was employed to summarize the find-
ings of the included studies. Results were organized the-
matically based on the cardiovascular outcome assessed 
(e.g., cardiac function, vascular health) and the experi-
mental model utilized (in vitro, in  vivo). Mechanistic 
insights into nanoplastic-induced cardiovascular toxicity 
were synthesized to provide a comprehensive overview of 
the current understanding in the field.

Nanoplastics and cardiovascular system
Despite a substantial body of animal-based studies vali-
dating the adverse health effects of NPs, there remains to 
be more data on their impacts on various human organ 
systems [26] (Fig. 1). While many of the published stud-
ies have explored the forms of MPs, their routes of entry 
into human systems, and their toxicity, significant gaps 
persist in understanding the mechanisms underlying 
these NPs’ toxicity [27, 28]. NPs can gain entry into the 
human body through several means, including inges-
tion, inhalation, and skin contact [29]. Evidence of NPs in 
human stool validates their entry through diet, drinking 
water, and food packaging [30]. Moreover, NPs have been 
detected in both indoor and outdoor particulates, such as 
synthetic textiles, construction materials, and abrasions 
of plastic materials, supporting their entry through inha-
lation [31]. While the skin membrane typically presents 
a barrier to MP and NP penetration, studies suggest that 

NPs can penetrate through wounds, sweat glands, or hair 
follicles [32].

Following absorption into the body, NPs and NPs may 
bind to cells and biological molecules, leading to the for-
mation of coronated nanoplastic particles for absorption 
[33]. Endocytic pathways, including phagocytosis, micro-
pinocytosis, as well as clathrin- and caveolae-mediated 
endocytosis, have been identified as crucial for cellular 
uptake of nanoparticles [34]. NPs are hypothesized to 
enter the gastrointestinal system through lymphatic tis-
sue and infiltrate the microfold (M) cells in the Peyer’s 
patches [35]. In the pulmonary route, NPs can permeate 
the thin alveolar tissue barrier and disperse throughout 
the body. In the dermal route, NPs leverage the weaken-
ing effects of radiation on the skin and the ingredients in 
body lotions to penetrate the skin barrier [36].

Upon entry into the body, MNPs and NPs can invade 
the heart and blood vessels, potentially causing adverse 
effects [37]. While the pathophysiology of nanoplastic-
induced cardiovascular toxicity is not fully understood, 
in  vitro studies suggest oxidative stress, inflammation, 
and apoptosis in vascular cells, while animal models 
indicate altered heart rate, myocardial fibrosis, and dys-
function [38, 39]. Exposure to PS-MPs has been linked 
to atrioventricular valve defects, cellular inflammation, 
mitochondrial lesions, and myocardial fiber destruction 
[1]. Nanoplastics can pass through the rodent placenta 

Table 1 Methodology

2.1. Literature search strategy

 Search criteria PubMed/MEDLINE, Scopus, Web of Science, Google Scholar

 Keywords “nanoplastics,” “microplastics,” “cardiovascular effects,” “heart disease”

 Search filters Boolean operators (AND, OR)

 Language restriction English

 Time frame Up to February 2024

2.2. Study selection criteria

 Inclusion criteria Published in peer-reviewed journals

Investigated cardiovascular effects of nanoplastics

Provided relevant data or insights into mechanisms of nanoplastic toxicity

Included experimental and observational studies

 Exclusion criteria Non-English articles

Studies focusing solely on other pollutants without mention of nanoplastics

Lack of relevance to cardiovascular health or mechanistic insights

Reviews, meta-analyses, conference papers

2.3. Data extraction and synthesis

 Data extraction Independently performed by two reviewers

Discrepancies resolved through discussion and consensus

 Synthesis approach Narrative synthesis

Organized thematically based on cardiovascular outcome and experimental model

Mechanistic insights synthesized for comprehensive overview
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and directly harm the fetal heart, bypassing the protec-
tive barrier. Additionally, exposure of human blastocysts 
to polystyrene nanoplastics during early development 
can hinder the formation of atrioventricular heart valves 
in newborns [7].

In vitro studies have shed light on the cellular responses 
to nanoplastic exposure within the cardiovascular system 
[40, 41]. One of the primary mechanisms implicated in 
nanoplastic-induced cardiovascular toxicity is oxidative 
stress, wherein excessive production of reactive oxygen 
species (ROS) overwhelms the antioxidant defense mech-
anisms of vascular cells [40]. This imbalance leads to oxi-
dative damage to cellular components, including lipids, 
proteins, and DNA, ultimately contributing to cellular 
dysfunction and death [38]. Additionally, NPs exposure 
has been associated with inflammation within the vas-
cular endothelium [41]. Inflammatory mediators, such as 
cytokines and chemokines, are upregulated in response 
to nanoplastic exposure, triggering an inflammatory cas-
cade that can disrupt normal vascular homeostasis [29]. 
Persistent inflammation within the blood vessels can con-
tribute to endothelial dysfunction, impaired vasodilation, 

and the development of atherosclerosis [30]. Moreo-
ver, studies have demonstrated that NPs exposure can 
induce apoptosis, or programmed cell death, in vascular 
cells [32]. This cellular response is mediated by various 
signaling pathways activated in response to nanoplastic-
induced oxidative stress and inflammation [35]. Apop-
tosis of vascular cells can compromise the structural 
integrity of blood vessels, impairing their function and 
predisposing to cardiovascular disorders [33]. A study 
found that patients with carotid artery plaque containing 
MNPs had a higher risk of experiencing a combined out-
come of myocardial infarction, stroke, or death within 34 
months of follow-up, compared to those without MNPs 
in their plaque [33].

Animal studies have provided valuable insights into 
the systemic effects of NPs exposure on cardiovascular 
function [21]. These studies have demonstrated altered 
heart rate, impaired cardiac contractility, and myocardial 
fibrosis following chronic nanoplastic exposure [28, 42]. 
Myocardial fibrosis, characterized by excessive deposi-
tion of collagen fibers in the heart muscle, can impair 
cardiac function and contribute to the development of 

Fig. 1 Nanoplastics and cardiovascular system
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heart failure [36]. Furthermore, exposure to polystyrene 
microplastics (PS-MPs) has been linked to structural 
abnormalities in cardiac valves, specifically atrioven-
tricular valve defects [43, 44]. These defects can disrupt 
normal blood flow within the heart chambers, leading to 
functional impairments and potentially predisposing to 
cardiovascular complications [45]. Additionally, animal 
models have revealed mitochondrial lesions in cardiac 
cells following nanoplastic exposure. Mitochondrial dys-
function can compromise cellular energy production and 
contribute to oxidative stress-mediated damage, exacer-
bating cardiovascular pathology [46]. Reviewing avail-
able epidemiological studies linking particulate matter 
exposure to specific cardiovascular outcomes (morbid-
ity, mortality, or hospitalizations), the evidence strongly 
supports a causal relationship with ischemic heart dis-
ease. For heart failure and ischemic stroke, the evidence 
is moderate and growing. The link to peripheral vascular 
disease and cardiac arrhythmia/arrest is currently mod-
est or inconsistent [22].

While the precise molecular mechanisms underly-
ing nanoplastic-induced cardiovascular toxicity require 
further elucidation, likely, a complex interplay of oxida-
tive stress, inflammation, apoptosis, and mitochondrial 
dysfunction contributes to the observed adverse effects 
[31]. NPs directly interact with vascular cells, triggering 
intracellular signaling cascades that culminate in cellular 
dysfunction and tissue damage [33]. Moreover, nanoplas-
tic-induced alterations in systemic inflammation and oxi-
dative stress exacerbate pre-existing cardiovascular risk 
factors, such as hypertension, dyslipidemia, and diabetes, 
further predisposing individuals to cardiovascular dis-
ease development [46].

Current evidence
Preclinical studies
Studies have explored the risks of various NPs and 
the potential association with cardiovascular events 
(Table 2). Laboratory-based experimental studies detail-
ing the results of different cardiac manifestations from 
cardiac fibrosis in rats exposed to polystyrene, thrombo-
sis, and impairment of myocardial contractility (Table 3). 
In 2020, an experimental study was carried out by Li 
Zekang et  al. [1] to ascertain the effect of polystyrene 
NPs causing fibrosis of the cardiac tissue by activating 
the Wnt/β-catenin signaling pathway and promoting 
cardiomyocyte apoptosis in 32 male Wister rats. They 
found out that among the exposure group, oxidative 
stress was significantly increased compared to the con-
trol. There was also evidence of collagen fiber expression; 
this was assessed by integrated optical density of collagen 
under Masson’s trichrome staining and Sirius red stain-
ing. Among the exposure group, this was statistically 

significant compared to the control group. Additionally, 
fibronectin was elevated, and Troponin I and CK-MB 
were increased in rats exposed to microplastics.

In the following year, Sun et al. [47] attempted to exam-
ine the level of cardiovascular toxicity among developing 
zebrafish embryos exposed to polyethylene nanoplastics. 
30 zebrafish embryos in each experimental group were 
used and pericardial toxicity, hemodynamic changes, 
thrombosis, ROS generation, and inflammation were 
examined. The results showed that with treatment with 
48 hpf (high-performance films) the group treated with 
polyethylene, exhibited elevated heart rates averaging 
173 beats per minute, although there was no statistically 
significant difference compared to the control group. 
Atrial rates and ventricular rates were unchanged in the 
concentration group, demonstrating that nanoplastics 
have no effect on the heart rates of zebrafish embryos. 
Additionally, it did not induce atrioventricular block. 
Conversely, with increased dose to 96 hpf led to pericar-
dial edema.

NPs have been hypothesized to impair the cardiac 
contractility of cardiac myocytes. In 2021, Amir et  al. 
[7], performed a laboratory-based experiment in neo-
natal rats. The study focused on tracing surface charge-
dependent nanoplastics in the cytosol of neonatal rats 
ventricular myocytes (NRVMs) and also to measure the 
contractile force. The outcome showed that the higher 
internalization of positively charged nanoplastics during 
the acute exposure resulted in reduced contractility of the 
myocardium due to alterations in the intracellular cal-
cium levels. NPs are also known to promote senescence 
of the endothelial cells of coronary arteries. To assess the 
possibility of this, Saugat et al. (2022) used a pig’s heart in 
a laboratory-based experimental study [40]. Nanoplastics 
were internalized and accumulated in endothelial cells in 
a time-dependent manner, increasing the Senescence-
associated beta-galactosidase activity in a concentration-
dependent manner highlighting its capability to cause 
senescence in coronary arteries. Noteworthily, nanoplas-
tics preferentially affect the endothelium rather than the 
smooth muscles. The exposure also increased the forma-
tion of reactive active species (ROS) leading to oxidative-
induced aging of endothelial cells.

In another experimental study, Zhang, Tianyi et  al. 
(2023) sorted to evaluate cardiotoxicity in mice after 
respiratory exposure to polystyrene nana-plastics [41]. 
72 mice were grouped with exposure to low, medium, 
and high doses. At 4 and 12 weeks of exposure, In-Vivo 
Imaging System (IVIS) showed an accumulation of nano-
plastics in the abdomen and chest of mice. It was noted 
that after 12 weeks of exposure, the weight of the heart 
in mice as well as body weight was significantly reduced. 
Swollen mitochondria, disrupted myocardial fibers, and 
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disappearing cristae were revealed on ultrastructural 
analysis.

Clinical studies
As the potential implications of nanoplastic exposure on 
CVS pathologies become a growing concern, numerous 
studies are presently underway to elucidate the pres-
ence and impact of nanoplastics on CVS. Marfella et al. 
[33] conducted a prospective, multicenter, observational 
study to collect carotid plaque specimens from patients 
undergoing carotid endarterectomy and study them for 
the presence of NPs with the use of pyrolysis–gas chro-
matography–mass spectrometry, stable isotope analysis, 
and electron microscopy. Out of the 257 patients, 150 
patients (58.4%) exhibited detectable quantities of poly-
ethylene (PE) within the excised carotid plaque while Pol-
yvinyl chloride (PVC) was found in measurable quantities 
in 31 (12.1%) of these individuals. A positive correlation 
was found between the presence of NPs and levels of 
inflammatory markers, suggesting NP’s role in inducing 
the proinflammatory pathways. Notably, it was observed 
during the 34 month follow-up period, within the cohort 
demonstrating evidence of NPs, 30 out of 150 patients 
(20.0%) experienced nonfatal myocardial infarction, non-
fatal stroke, or succumbed to mortality from any cause. 
Conversely, in the subgroup lacking detectable NPs, 8 out 
of 107 patients (7.5%) experienced such adverse events. 
These findings establish that patients with higher levels of 
NPs in the carotid plaque are at greater risk of developing 
adverse cardiovascular outcomes.

An ACS cohort study suggested an association between 
prolonged PM2.5 exposure and increased risk of death 
from arrhythmias, heart failure, and cardiac arrest (rela-
tive risk 1.13, 95% confidence interval 1.05 to 1.21 per 10 
μg/m3), though the effect was weaker than for ischemic 
heart disease mortality [22].

Another study conducted by Yang et  al. [45] focused 
on the detection of NPs within human cardiac tissues 
and adjacent structures. The study involved the collec-
tion of five distinct types of normal tissue samples from 
patients undergoing various cardiac surgical procedures. 
These tissue types comprised pericardium, epicardial adi-
pose tissue (EAT), pericardial adipose tissue (PAT), myo-
cardium, and the left atrial appendage (LAA). NPs were 
detected in all five types of samples, ranging from 20 
to 469 μm in diameter. However, particles smaller than 
20 μm could not be identified due to limitations in the 
methods used.

Nine different types of MPs were found in the tissue 
samples, with the most common being polyethylene tere-
phthalate (PET) constituting 77% and polyurethane (PU) 
making up 12%, accounting for approximately 90% of the 
total MPs detected. PE was present in all tissue types, 

although it comprised only 1% of the total MP count. The 
investigation also extended to the examination of venous 
blood samples obtained prior to and following surgi-
cal procedures. Notably, NPs were detected in all blood 
samples, with sizes ranging from 20 to 184 μm. Concern-
ingly, alterations in the composition of NPs were noted 
between pre- and post-surgery blood samples. These 
findings suggest the possibility of the introduction of NPs 
into the bloodstream during the invasive medical proce-
dures and surgery.

To study the presence of NPs in the arterial system, 
Liu et al. [46] collected samples of carotid arteries, coro-
nary arteries, and aorta from patients undergoing vascu-
lar surgeries. NPs were found in each of the 17 arterial 
samples, with concentrations varying between 52.62 and 
225.23 μg/g of tissue, and averaging at 118.66 ± 53.87 
μg/g of tissue. Mainly four kinds of NPs were found in 
the arterial samples, of which PET was predominant 
(73.70%), followed by PA-66 (15.54%), PVC (9.69%), and 
PE was the least (1.07%). The study also investigated the 
demographic characteristics of the donors, including fac-
tors such as age, body mass index, and blood pressure, 
along with their daily habits related to plastic use, such 
as smoking, consumption of bottled water, take-out food, 
and prepackaged food. Additionally, the ambient air qual-
ity of their residence was examined for its potential effect 
on NPs concentrations in arterial tissues. However, the 
results of Spearman’s correlation analysis indicated no 
significant correlation between these factors and micro-
plastic concentrations within arterial tissues.

Current challenges in studying nanoplastics
Studying NPs presents a multifaceted challenge that 
demands meticulous attention and innovative solutions 
[43, 44, 48]. With plastic production surging to unprec-
edented levels, concerns regarding environmental con-
tamination and potential health risks have escalated 
proportionally [43, 48]. A primary obstacle in studying 
NPs lies in their interactions with biological systems and 
their diverse routes of exposure [43, 48]. While efforts 
have focused on identifying their presence in organs 
like the intestine and placenta, direct in  vivo evidence 
remains limited [43, 48]. Moreover, the methods used for 
detection, such as the Laserdirect infrared (LDIR) chemi-
cal imaging system, may underestimate their prevalence, 
necessitating the development of more sensitive tech-
niques [43, 48]. Additionally, correlating exposure to  
health outcomes poses challenges due to limited sample  
sizes and the absence of robust epidemiological data  
[43, 48].

Methodological limitations further hinder accu-
rate detection and characterization of NPs [43, 44, 48]. 
Techniques like pyrolysis–gas chromatography–mass 
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spectrometry have been employed, but inconsisten-
cies in results and limitations in distinguishing between 
different types of plastics remain [44, 48]. Moreover, 
understanding the sources and pathways of these parti-
cles in the human body requires longitudinal studies and 
interdisciplinary collaborations [44, 48]. The complex-
ity of the research is compounded by ethical considera-
tions surrounding human exposure to microplastics and 
the translation of findings from animal models [46]. 
Addressing these challenges necessitates collaborative 
efforts to standardize methodologies, prioritize fund-
ing, and develop innovative research approaches [46]. 
Only through concerted action can we unravel the intri-
cate interplay between nanoplastics, microplastics, and 
human health [46].

The escalating production of plastics, reaching a stag-
gering 390 million tons in 2021 from 1.5 million tons 
in 1950, underscores the urgency for robust regulatory 
measures [2]. Despite efforts, recycling rates in Europe 
remain low, with only 34.6% recycled in 2020, posing sig-
nificant ecological risks [3]. Examining the effectiveness 
of current regulatory frameworks reveals limitations in 
addressing the proliferation of NPs [45]. While regula-
tions exist, their enforcement and efficacy in curbing 
plastic pollution remain questionable [45], compounded 
by the complex nature of NP pollution and its trans-
boundary transport [45].

Advancements in analytical techniques, like laser direct 
infrared (LDIR) chemical imaging systems, offer promise 
in detecting NPs in human tissues [22]. However, current 
regulatory frameworks have yet to adapt to incorporate 
such innovative methodologies [25], highlighting the 
critical need to update regulations to encompass emerg-
ing technologies [36]. The identification of NPs in the 
human cardiovascular system underscores the urgency 
of enhancing regulatory measures [28], especially consid-
ering the diverse chemical composition of NPs and their 
potential health implications [31].

Global regulatory frameworks governing plastic pro-
duction and disposal vary, with fragmented approaches 
to addressing the challenges posed by MPs [45]. While 
some jurisdictions have implemented bans or restrictions 
on single-use plastics, regulation of nanoplastics remains 
underexplored [33]. Existing measures primarily focus 
on macroplastics and microplastics, overlooking the 
unique hazards associated with NPs [33], exacerbated by 
the lack of standardized detection methods [33]. Coor-
dinated international efforts are necessary to develop 
comprehensive regulatory frameworks targeting NPs 
[33], emphasizing the need for adaptive and proactive 
approaches [25].

Despite efforts to mitigate macroplastic pollution, lim-
ited attention is directed towards NPs specifically [46]. 

Regulatory measures, such as bans on single-use plas-
tics and initiatives promoting waste management, repre-
sent crucial steps [46]. However, challenges in detecting, 
quantifying, and characterizing nanoplastics hinder the 
effectiveness of these measures [46]. Standardized meth-
odologies for NPs detection are lacking, complicating 
risk assessment and management strategies, showing the 
need for enhanced regulatory capacity and interdiscipli-
nary collaboration [46].

Conclusion and future directions
Studies into NPs research show the interplay between 
environmental pollutants and human health, particularly 
cardiovascular well-being. From their initial origins as 
environmental contaminants to their pathways of expo-
sure and subsequent cardiovascular effects, NPs repre-
sent a multifaceted challenge demanding comprehensive 
investigation and proactive measures. Experimental stud-
ies utilizing animal models and clinical observations in 
human subjects have provided evidence of the cardiovas-
cular risks associated with NPs exposure, ranging from 
altered heart rate and myocardial fibrosis to structural 
abnormalities in cardiac valves and endothelial dysfunc-
tion. Moreover, the presence of NPs within human car-
diovascular tissues, from the arterial system to cardiac 
tissues and adjacent structures, underscores their per-
vasive impact on human health. Despite significant pro-
gress, numerous challenges persist in studying NPs and 
addressing their implications for cardiovascular health. 
Methodological limitations, ethical considerations, and 
gaps in regulatory frameworks pose substantial hurdles 
to advancing our understanding and implementing effec-
tive mitigation strategies. Moreover, the escalating pro-
duction and inadequate management of plastics shows 
the urgent need for robust regulatory measures and 
interdisciplinary collaborations to safeguard both envi-
ronmental and human health.

Moving forward, concerted efforts are needed to stand-
ardize methodologies, prioritize funding, and develop 
innovative research approaches to unravel the interplay 
between NPs and cardiovascular health. Enhancing regu-
latory frameworks, promoting sustainable plastic man-
agement practices, and fostering global cooperation are 
essential steps toward mitigating the cardiovascular risks 
posed by NPs.
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