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Abstract 

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance (IR) and hyper‑
glycemia. The development of inflammatory disorders in T2DM triggers the activation of different growth factors 
as a compensatory mechanism to reduce IR and adipose tissue dysfunction in T2DM. Fibroblast growth factor 21 
(FGF21) which is involved in the regulation of glucose homeostasis is attractive to be a novel therapeutic target 
in the management of T2DM. FGF21 has poor pharmacokinetic profile as it rapidly degraded; therefore, FGF21 
analogs which are more stable can be used in T2DM patients. However, FGF21 analogs are tested pre‑clinically 
but not approved in clinical settings. Therefore, searching for anti‑diabetic agents who enhance FGF21 expression 
is mandatory. It has been shown that metformin which used as a first‑line in the management of T2DM can positively 
affect the expression of FGF21, though the underlying mechanisms for metformin‑induced FGF21 expression are 
not fully elucidated. Therefore, this review from published studies aimed to find how metformin improves insulin 
sensitivity through FGF21‑dependent pathway in T2DM. In conclusion, metformin improves FGF21 signaling in T2DM, 
and this could be a novel mechanism for metformin in the amelioration of glucose homeostasis and metabolic disor‑
ders in T2DM patients.
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Introduction
Type 2 diabetes mellitus (T2DM) is a chronic meta-
bolic disorder characterized by insulin resistance (IR) 
and hyperglycemia [1]. T2DM is linked with inflam-
matory disorders and end-organ injury due to hyper-
glycemia-induced oxidative stress and the release of 

pro-inflammatory cytokines [2]. IR and relative insu-
lin deficiency due to pancreatic β cell dysfunction is the 
major feature of T2DM [3]. Activation of inflammatory 
disorders in T2DM occurs due to immune cell deregu-
lation and infiltration of immune cells into adipose tis-
sue that advances the expression of pro-inflammatory 
cytokines with the development of systemic inflamma-
tion [3]. Extended low-grade inflammation in T2DM by 
hyperglycemia and adipose tissue activation increases 
the development of IR and associated complications 
[4]. Inflammatory disorders participate in the progres-
sion of IR, T2DM, and systemic complications [5]. It 
has been revealed that hypoglycemia and hyperglyce-
mia as well as glucose variability activate oxidative stress 
which enhances inflammatory disorders [6]. Further-
more, environmental and genetic factors such as stress, 
diet, and smoking are affianced with the activation of 
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chronic inflammation in T2DM [7]. These inflamma-
tory changes trigger the activation of different growth 
factors as a compensatory mechanism to reduce IR and 
adipose tissue dysfunction in T2DM [8]. One of the most 
important growth factors is fibroblast growth factor 21 
(FGF21) which is involved in the regulation of glucose 
homeostasis by increasing insulin sensitivity [9]. Of note, 
the insulin-sensitizing drug metformin which is used 
as a first-line in the management of T2DM can posi-
tively affect the expression of FGF21 [10]. Therefore, this 
review of published studies aimed to find how metformin 
improves insulin sensitivity through the FGF21-depend-
ent pathway in T2DM.

Fibroblast growth factor 21
FGF21 is a peptide hormone released from the liver as a 
member of different hormones called hepatocytes [11]. 
FGF21 is extremely expressed in the liver, pancreas, and 
adipose tissues [12]. Skeletal muscles and other tissues 
also produce FGF21 via a phosphoinositide 3 kinase 
(PI3K)-mediated pathway [13]. Expression of FGF21 dif-
fers by diverse pathophysiological conditions, fasting, 
and exercise which increases FGF21 expression in the 
liver and muscles correspondingly [14]. In addition, sati-
ety and cold exposure augment FGF21 expression in the 
pancreas and adipose tissue correspondingly [15]. Differ-
ent cellular signaling affects FGF21 expression like liver 
X receptor (LXR) which inhibits FGF21 expression [16]. 

FGF21 expression is also induced by thyroid hormones 
and fructose [17]. A chronic low-protein diet promotes 
FGF21 expression which improves the metabolic pro-
file [18]. Hepatic FGF21 expression is induced by per-
oxisome proliferator activator receptor alpha (PPAR-α), 
and adipose tissue FGF21 expression is induced by 
PPAR gamma (PPAR-α) [19]. However, mitochondrial 
3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) 
and sirtuin-1 (SIRT1) specifically induce FGF21 expres-
sion [20]. FGF21 binds four types of FGF receptors 1–4. 
Interaction of FGF21 with its receptor is improved by 
β-Klotho which is a transmembrane protein that acts as 
a co-receptor for FGF21 [15]. FGF21 augments glucose 
uptake and gluconeogenesis [21]. FGF21 has many ben-
eficial effects on different body systems (Fig. 1).

Pharmacology of metformin
Metformin is an insulin-sensitizing agent reduces IR [22, 
23]. Metformin is 3-(diaminomethylidene)-1,1-dimethyl-
guanidine [24] (Fig. 2).

Metformin is an orally active drug, absorbed from 
the small intestine via plasma membrane monoamine 
transporter (PMAT) expressed in the enterocytes [25]. 
Organic cation transporter 2 (OCT2) which is expressed 
on the brush border of enterocytes is concerned with 
the uptake of metformin [26]. Hepatic uptake of met-
formin is mostly by OCT1 and less by OCT3. The uptake 
of metformin by the renal epithelial cell is mediated by 

Fig. 1 Endogenous FGF21 expression and interaction in metabolic organs. The liver, white and brown adipose tissue, skeletal muscle, 
the pancreas, and the heart are among the metabolic organs that express and secrete FGF21 in response to diverse stimuli [13, 15, 18, 20]. 
The FGFR1/KLB complex in the brain and white adipose tissue can be targeted by systemic FGF21, which is mostly produced by the liver. CRF, 
corticotropin‑releasing factor; SNS, sympathetic nervous system; FGF21, fibroblast growth factor‑21; WAT, white adipose tissue
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OCT2, and its excretion by the kidney is through multi-
drug and toxin extrusion 1 (MATE1) [27]. Metformin is 
not metabolized and is excreted unchanged by the kid-
ney. Metformin half-life is 5 h, highly distributed, and its 
plasma steady state ranged 54–4133 [28]. Metformin has 

an exclusive pharmacodynamic effect (Fig. 3); metformin 
is a positive charge molecule, extremely accumulated in 
the mitochondria because of the negative charge of the 
mitochondrial membrane [29].

Metformin inhibits ATP production through the 
inhibition of mitochondrial complex I leading to an 
increase AMP: ATP with increasing levels of adenosine 
monophosphate protein kinase (AMPK) [32]. AMPK 
inhibits gluconeogenesis and fat synthesis, decreases 
hepatic fat storage, and improves insulin sensitivity and 
anaerobic glucose metabolism in the enterocytes [30]. 
Metformin promotes glucose utilization by gut micro-
biota with the activation release of glucagon-like peptide 
1 (GLP-1) from L cells in the intestine [33]. Furthermore, 
metformin improves peripheral glucose utilization by 
increasing the expression of glucose transporter type 4 
(GLUT4) with subsequent improvement of insulin sen-
sitivity [31]. Moreover, metformin has pleiotropic prop-
erties like anti-inflammatory and oxidant effects thereby 
reducing the risk of diabetic complications [34].

Prolonged use of metformin is linked with the develop-
ment of various adverse effects counting gastrointesti-
nal disorders like diarrhea, nausea, vomiting, abdominal 
pain, and loss of appetite [35]. Nevertheless, prolonged 
use of metformin is linked with the development of 
weight loss,  B12, and folate deficiency with a risk of 

Fig. 2 Chemical structure of metformin

Fig. 3 Metformin’s pharmacodynamics pathway. Cells have been stylized to show how metformin works. Metformin appears to elevate 
insulin sensitivity and AMPK levels, which improves glucose transport [30, 31]. AMP, adenosine monophosphate; AMPK, adenosine 
monophosphate‑activated protein kinase; mGPD, mitochondrial glycerophosphate dehydrogenase; OCT1, organic cation transporter 1; NAD, 
nicotinamide adenine dinucleotide; NADH, H for hydrogen; FADH, flavin adenine dinucleotide
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peripheral neuropathy and cognitive impairment [36]. A 
rare but serious adverse effect related to metformin use is 
lactic acidosis which developed due to a reduction in the 
use of lactate by inhibited gluconeogenesis process [37]. 
Metformin toxicity due to overdosage leads to hypoglyce-
mia and lactic acidosis; it is treated by hemodialysis [38].

Moreover, metformin had low interaction with other 
drugs as it was not metabolized and excreted unchanged 
by the kidney [39]. Aspirin and anti-diabetic agents 
increase the risk of hypoglycemia when used with met-
formin [40], though some drugs like cimetidine, topira-
mate, ranolazine, and cephalexin increase the risk for the 
development of lactic acidosis by competing with met-
formin renal excretions [39].

Effects of metformin on FGF21 in T2DM
FGF21 in T2DM
It has been reported that FGF21 plays a critical role in 
the regulation of glucose metabolism and can be used 
as a monotherapy in the management of T2DM [41]. 
FGF21 exerts a beneficial effect on T2DM and obesity 
by reducing blood glucose and restoring the function of 
adipose tissue respectively [42]. Of note, FGF21 expres-
sion is increased in T2DM patients as a compensatory 
mechanism to counteract inflammatory disorders and 
associated IR [43]. An experimental study illustrated 
that hepatic expression of FGF21 mRNA was increased 
in mice with a high-fat diet [44]. Obesity in children 
increases circulating FGF21 levels due to the develop-
ment of FGF21, and weight loss decreases FGF21 levels 
[45]. It has been shown that FGF21 level is increased 
during fasting; however, this reaction is impaired in 
mice with experimental diabetes [46]. FGF21 analog 
LY2405319 was confirmed to improve blood glucose in 
streptozotocin-induced diabetes in mice through modu-
lation metabolism of brown adipose tissue (BAT) [46]. 
Furthermore, there is a significant change in postpran-
dial FGF21 level in diabetes according to preclinical and 
clinical findings [47, 48]. FGF21 level is higher in T2DM 
patients compared to controls due to the development 
of FGF21 resistance [47]. Chavez et  al. [49] observed 
that circulating FGF21 level is increased in patients with 
impaired glucose tolerance and T2DM that correlated 
with IR. A population-based prospective study in China 
observed that higher FGF21 level in prediabetes subjects 
was a predictor for the development of T2DM within 
5.4 years [50].

Under normal physiological conditions, glucose stimu-
lates while insulin inhibits FGF21 secretion [51]. How-
ever, FGF21 secretion is mainly driven by blood glucose 
independent of insulin or glucagon-like peptide 1 (GLP-
1) secretion in normal healthy subjects [51]. In addition, 
many studies reported that insulin did not affect FGF21 

secretion [52, 53]. However, super-physiological insulin 
level enhances FGF21 secretion [54]. In addition, gluca-
gon enhances FGF21 secretion independent of insulin 
level [55]. Similarly, glucagon promotes hepatic expres-
sion of FGF21 [56]. In T2DM, glucagon and insulin lev-
els are augmented and implicated in the development of 
diabetic complications [57]. Therefore, increasing gluca-
gon and insulin levels in T2DM together with FGF21 
resistance may explain a higher level of FGF21 in T2DM 
patients.

Of note, FGF21 has a poor pharmacokinetic profile; 
it rapidly degraded in vitro and in vivo, so it has a short 
half-life [46]. Therefore, FGF21 analogs could be novel 
therapeutic agents for the management of T2DM and 
metabolic disorders [58]. Therefore, FGF21 analogs that 
are more stable can be used in T2DM patients. It has 
been shown that in two administrations of FGF21 ana-
logs, mFGF21 was more effective than insulin glargine 
and GLP-1 receptor agonist liraglutide in the reduction of 
glycated hemoglobin level, improvement of insulin sen-
sitivity, and lipid profile [59]. The half-life of mFGF21 is 
20 times longer than FGF21, so it induces rapid and per-
sistent reduction of blood glucose independent of insulin 
secretion without risk of hypoglycemia [58]. In addition, 
mFGF21 increases the expression of glucokinase (GK) 
and GLUT-1 leading to more reduction of blood glu-
cose [59]. Additionally, FGF21 analogs AKR-001 improve 
insulin sensitivity and reduce metabolic complications in 
FGF21 analogs [60]. A previous clinical trial on the use 
of FGF21 variant LY2405319 (LY) compared to placebo 
in obese patients with T2DM revealed that LY use for 
4  weeks improves dyslipidemia and insulin sensitivity 
with significant reduction of atherogenic risk [61]. These 
findings indicated that FGF21 analogs are highly effective 
in the management of T2DM.

The underlying mechanism for the reduction of blood 
glucose is related to the inhibition of G6Pase and activa-
tion of GK and GLUT-1 as illustrated in Fig. 4.

Metformin and FGF21
It has been reported from preclinical and clinical find-
ings that metformin increases the expression of FGF21 
[62–64]. In  vitro and in  vivo studies showed that met-
formin promotes the expression of FGF21 through 
AMPK dependent pathway [62]. In addition, metformin 
increases FGF21 expression through the induction of 
expression of activating transcription factor 4 (ATF4) 
[62]. Metformin therapy for 6 months in T2DM patients 
increased FGF21 circulating level through ATF4 [62]. 
ATF4 in addition to its neurological is also involved in 
the regulation of lipid and glucose metabolism through 
modulation of insulin secretion and sensitivity [65]. It 
has been shown that metformin has protected against 
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lipopolysaccharide (LPS)-induced inflammation by 
increasing the expression of FGF21 in rats [66]. Further-
more, metformin improves blood glucose and increases 
the expression of hepatic FGF21 via AMPK pathway 
[63]. Therefore, FGF21 seems to be a potential mediator 
for the action of metformin in the regulation of glucose 
homeostasis and metabolic adaptive response [67].

Moreover, metformin regulates metabolic balance 
through the induction expression of FGF21 in adipocytes 
and the liver [64]. Increasing expression of FGF21 by 
metformin not only regulates blood glucose but also con-
tributes in the regulation of autoimmune response and 
atherogenic risk [68, 69]. Metformin through AMPK/
FGF21 improves the differentiation of brown adipose tis-
sue and regulates immune balance in obese mice [68]. In 
addition, metformin reduces the progression of athero-
sclerosis by increasing the expression of FGF21 [69].

Of note, β-Klotho which is a co-receptor for FGF21 
[15] is also deregulated in T2DM [70]. Notoriously, 
β-Klotho/FGF21 complex seems to be an attractive target 
in the management of T2DM [70]. It has been observed 

that β-Klotho serum is reduced in T2DM [71], and this 
may explain the development of FGF21 resistance in 
T2DM patients. A case–control study involving 261 
T2DM and 106 healthy controls observed that β-Klotho 
serum reduced as compared to controls [71]. Notably, 
β-Klotho is highly downregulated in T2DM patients, 
and downregulation induces the development of diabetic 
complications [70]. Therefore, amelioration of β-Klotho 
expression by anti-diabetic agents may reduce the risk 
of diabetic complications. Interestingly, metformin pro-
motes β-Klotho expression thereby it acts as anti-aging 
agent [23]. In addition, metformin prevents diabetic 
nephropathy by increasing the expression of β-Klotho 
[72].

It has been shown that diabetic mice had low FGF21 
sensitivity due to higher circulating miR34a levels [73]. 
Consequently, increasing of β-Klotho and its effectors 
SIRT1 and ERK by metformin was shown to improve 
FGF21 sensitivity [73], though over-expression of 
FGF21 in T2DM may lead to FGF21 resistance [74]. 
Furthermore, IR and high pro-inflammatory cytokines 

Fig. 4 The glucose‑lowering effect of FGF21. FGF21, fibroblast growth factor‑21; ATP, adenosine triphosphate; ADP, adenosine diphosphate
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like TNF-α repress the expression of β-Klotho leading 
to FGF21 resistance in adipocytes that further aggra-
vate inflammatory disorders [75]. Thus, mitigation of 
IR by metformin can regulate β-Klotho expression and 
abrogate FGF21 resistance. These observations suggest 
that metformin via increasing β-Klotho expression can 
enhance the functional activity of FGF21.

Chau et al. [76] illustrated that FGF21 regulates energy 
metabolism by increasing the expression of PGC-1α, 
SIRT1, and AMPK. Inhibition of PGC-1α, SIRT1, and 
AMPK reduces the effect of FGF21 on gene expression 
and oxygen consumption by adipocytes with the develop-
ment of FGF21 resistance [76]. Of note, metformin acti-
vates PGC-1α, SIRT1, and AMPK [77, 78]. Metformin 
attenuates pancreatic β cell apoptosis and prevents IR 
via the activation of PGC-1α, SIRT1, and AMPK [77]. In 
addition, metformin prevents gluconeogenesis through 
increasing the expression of hepatic PGC-1α [78]. Hence-
forth, metformin through modulation of PGC-1α, SIRT1, 
and AMPK improves FGF21 signaling and reduces 
FGF21 resistance.

Moreover, metformin increases the production of 
GLP-1 from L cells with significant protection of GLP-
1-producing cells [79]. Analysis from clinical trials illus-
trated that metformin increases the release of GLP-1 
[80]. GLP-1 acts additively with FGF21 against the 
development of T2DM in mice [81]. Genetic ablation 
of glucagon receptor increases FGF21 expression [81]; 
therefore, increasing GLP-1 by metformin reduces gluca-
gon and improves the release of FGF21. Remarkably, 
GLP-1 blocks hepatic glucose output through increasing 
expression of FGF21 [82]. Therefore, glucose homeostasis 
induced by GLP-1 is mediated by FGF21 signaling. Sup-
porting this notion, the inhibition of FGF21 receptors 
by antibodies reduced the inhibitory effect of GLP-1 on 
hepatic glucose output [82]. Thus, metformin improves 
FGF21 by increasing the expression of GLP-1 in patients 
with T2DM.

Furthermore, metformin augments the expression 
of anti-inflammatory growth differentiation factor 15 
(GDF15) which reduces body weight and improves 
insulin sensitivity [24, 83]. GDF15 improves the expres-
sion of β-Klotho in experimental acute kidney injury 
[84]. Fasting promotes the expression of FGF21 which 
enhances the release of GDF15 which in turn enhance 
the release of FGF21 [85]. In addition, both of FGF21 
and GDF15 are augmented in response to mitochon-
drial dysfunction [86]. Of note, cold exposure activates 
sympathetic drive which promotes release of GDF15 
though FGF21 [87]. Therefore, metformin through acti-
vation of GDF15 improves the expression and release 
of FGF21. Regarding role of inflammatory disorders in 
T2DM and their effects on the expression on GDF15 

and FGF21, it has been shown that pro-inflammatory 
cytokines, p53, and angiotensin II promote the expres-
sion and release of GDF15 [88, 89]. Besides, proin-
flammatory cytokines attenuate the metabolic effect 
of FGF21 leading to FGF21 resistance [90]. Therefore, 
increasing of GDF15 by metformin can mitigates the 
inflammatory disorders in T2DM and enhances FGF21 
action. In addition, FGF21 is anti-inflammatory by 
inhibiting the inflammatory signaling pathway NF-κB 
and increasing expression of anti-inflammatory nuclear 
factor erythroid 2-related factor 2 (Nrf2) [91]. There-
fore, the anti-inflammatory effects of metformin might 
be mediated by FGF21. In this state, there is a complex 
interaction between GDF15 and FGF21 during inflam-
matory reactions in T2DM.

Of note, liver X receptor (LXR) inhibits FGF21 expres-
sion [16]. High-cholesterol fed promotes expression of 
LXR which reduces expression of FGF21 expression [16]. 
Likewise, LXR agonists TO-901317 reduce expression of 
FGF21 to protect the liver from cholesterol accumula-
tion and intrahepatic lipolysis [16]. In addition, fasting-
induced expression of FGF21 is inhibited by LXR agonists 
via the activation of histone deacetylase 3 (HDAC3) co-
repressor in mice [92]. LXR is involved in lipid and glu-
cose homeostasis, and dysregulation of LXR is involved 
in the pathogenesis of T2DM. Genetic variation of LXR 
is implicated in T2DM as confirmed in a clinical study 
[93]. Dysregulation of LXR in T2DM increases the risk 
for the development of nonalcoholic fatty liver disease 
(NAFLD) [94]. Different studies illustrated that met-
formin is effective against the development NAFLD 
in T2DM by various molecular mechanisms inclusion 
repression expression of LXR [95, 96]. It has been shown 
by many studies that metformin can reduce the expres-
sion of LXR [97, 98]. Metformin attenuates the devel-
opment of NAFLD by downregulating the expression 
of LXR in mice [97]. Similarly, metformin reduces the 
hypothalamic pituitary adrenal axis in T2DM through 
induction phosphorylation of LXR in the pituitary [98]. 
Therefore, metformin through modulation of LXR can 
improve FGF21 expression.

Furthermore, hepatic FGF21 expression is induced 
by PPAR-α [19]; thus, PPAR-α agonists can enhance 
FGF21 expression [99]. Interestingly, metformin induces 
expression of GLP-1 independent of AMPK pathway but 
through activation of PPAR-α in mice [100]. In addition, 
metformin reduces the risk of atrial fibrillation in T2DM 
patients through induction expression of PPAR-α which 
regulates lipid metabolism in the atria [101]. Herein, met-
formin through induction of PPAR-α improves FGF21 
expression.

Taken together, metformin improves FGF21 signal-
ing in T2DM, and this could be a novel mechanism for 
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metformin in the amelioration of glucose homeostasis 
and metabolic disorders in T2DM patients.

Conclusions
T2DM is a chronic metabolic disorder characterized by 
IR and hyperglycemia. Commencement of inflammatory 
disorders in T2DM occurs due to immune cell deregu-
lation and infiltration of immune cells into adipose tis-
sue that advances the expression of pro-inflammatory 
cytokines with the development of systemic inflamma-
tion. These inflammatory changes stimulate the acti-
vation of different growth factors as a compensatory 
mechanism to reduce IR and adipose tissue dysfunction 
in T2DM. One of the most important growth factors is 
FGF21 which is concerned with the regulation of glucose 
homeostasis by increasing insulin sensitivity. Of note, 
the insulin-sensitizing drug metformin which is used as 
a first-line in the management of T2DM can positively 
affect the expression of FGF21. FGF21 plays a critical role 
in the regulation of glucose metabolism and can be used 
as a monotherapy in the management of T2DM. FGF21 
expression is increased in T2DM patients as a compen-
satory mechanism to counteract inflammatory disorders 
and associated IR. Glucagon promotes hepatic expres-
sion of FGF21 and in T2DM; glucagon and insulin levels 
are augmented and implicated in the development of dia-
betic complications. Therefore, increasing glucagon and 
insulin levels in T2DM together with FGF21 resistance 
may explain a higher level of FGF21 in T2DM patients. 
FGF21 has a poor pharmacokinetic profile; it rapidly 
degraded, so it has a short half-life. Thus, FGF21 analogs 
could be novel therapeutic agents for the management of 
T2DM and metabolic disorders. FGF21 analogs which 
are more stable can be used in T2DM patients. However, 
FGF21 analogs are tested preclinically but not approved 
clinical settings. Therefore, searching for anti-diabetic 
agents who enhance FGF21 expression is mandatory.

Metformin increases expression of FGF21 through 
AMPK dependent pathway. In addition, metformin 
increases FGF21 expression via induction of expression 
of different signaling pathways including PGC-1α, SIRT1, 
GDF15, PPAR-α, and GLP-1. In addition, β-Klotho which 
is a co-receptor for FGF21 is also deregulated in T2DM. 
Interestingly, metformin promotes β-Klotho expression. 
Therefore, mitigation of IR by metformin can regulate 
β-Klotho expression and abrogate FGF21 resistance. 
Henceforth, metformin improves FGF21 signaling in 
T2DM, and this could be a novel mechanism for met-
formin in the amelioration of glucose homeostasis and 
metabolic disorders in T2DM patients. Clinical trials 
and large-scale clinical studies are recommended in this 
regard.
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