# RESEARCH Open Access



# Awareness of gestational diabetes problem among Sohag Governorate women

Hamdy Saad<sup>1</sup>, Adel Abdel Aziz<sup>1,2</sup>, Eslam Emad<sup>1</sup> and Mahmoud Gaber<sup>1\*</sup>

# **Abstract**

**Background** Gestational diabetes mellitus (GDM) is the most frequent and prevalent medical condition in pregnancy. Well-controlled GDM results in reduction of these unfavorable outcomes.

**Aim** To assess women's knowledge of many elements of gestational diabetes mellitus, including general awareness of the condition, risk factors, diabetic patients' diets, and consequences among the women in the governorate of Sohag.

**Patients and methods** In this research, 500 women were chosen at random from a population, over a period of 6 months, to participate in a descriptive survey utilizing a questionnaire approach in Sohag Governorate.

**Results** The mean total knowledge score was  $9.62 \pm 4.24$ . A total of 69.6% of study participants showed good knowledge ( $\geq$  9), while 30.4% of them showed low knowledge about gestational diabetes. There was significant positive relation between degree of knowledge and family history of diabetes (p=0.038) as there was substantial increase of high knowledge score in cases who had positive history of family history of diabetes.

**Conclusion** Awareness about gestational diabetes mellitus was satisfactory among women in Sohag Governorate. Other's experiences or advices were the most common source of general knowledge. There was significant proportional relationship between degree of awareness and occupation, higher age, family history of diabetes, history of gestational diabetes, and level of education. Healthcare workers have to play a greater role in awareness about GDM among women.

**Trial registration** Awareness of gestational diabetes problem among Sohag Governorate women, NCT05148897. Registered 10 November 2021, https://register.clinicaltrials.gov/prs/app/action/LoginUser?ts=2&cx=-jg9qo3.

**Keywords** Gestational diabetes, Awareness, GDM

## Introduction

The most frequent and widespread medical issue in pregnancy is gestational diabetes mellitus (GDM), which is any degree of glucose intolerance that begins or is first diagnosed during pregnancy. This term is applicable whether or not someone is receiving therapy with

insulin [1]. The incidence of gestational diabetes is rising globally, including in Egypt. *According to the (IDF) 2021 Report, the prevalence of GDM is 14.2% of pregnant women,* and Egypt was ranked among the top 21 nations with an incidence rate of 15.9% in 2018 [2–4].

A history of prior GDM, a BMI above 25 kg/m², pregnancy-induced hypertension, a family history of diabetes, polycystic ovarian syndrome, a history of abortion, being older than 25 years, and being involved in more than two parties are all risk factors for GDM [5].

Additionally, there is a higher chance of developing long-term diabetes among GDM-positive women. Negative maternal–fetal outcomes from poorly controlled

Mahmoud Gaber

mahmoudgaber@med.sohag.edu.eg

<sup>&</sup>lt;sup>2</sup> International Diabetes Federation IDF, Brussels, Belgium



<sup>\*</sup>Correspondence:

<sup>&</sup>lt;sup>1</sup> Department of Internal Medicine, Faculty of Medicine, Sohag University,

GDM include miscarriages, cesarean sections, macrosomia, neonatal hypoglycemia, stillbirths, and neonatal deaths [6].

For information on the safety of contraceptive techniques, women with diabetes should consult the United States Centers for Disease Control (CDC) Medical Eligibility Requirements for Contraceptive Usage guidelines [7]. Women of childbearing age with DM must understand that there are pregnancy-related risks in DM but have limited uptake of preconception planning. Although LARC (long-acting reversible contraceptive) methods are recommended in clinical guidelines, women with DM have substantial uncertainty regarding their safety in DM [8].

These negative consequences are decreased by GDM that is well-controlled. The main element for improved health outcomes is proper GDM treatment. The main factor in managing GDM is the proactive care that women take to maintain normal glycemic levels [9]. It relies on the patient having a suitable level of health literacy, including understanding normal and abnormal glycemic readings and nutritional values [10].

When women are informed about GDM, they are more likely to follow a healthy lifestyle, have better health-care habits, take better care of themselves, and avoid or detect the illness early. Sohag Governorate women were included in this research to assess their knowledge of several elements of gestational diabetes mellitus, including general understanding of the condition, risk factors, diabetic patients' diets, and consequences.

# **Materials and methods**

Descriptive cross-sectional research was initiated at the Department of Internal Medicine, Faculty of Medicine, Sohag University, during the period from November 2021 to October 2022. Informed consent had been taken from all patients. The research was approved by Medical Ethics Committee of Sohag University Faculty of Medicine.

Five-hundred women were chosen at random as research participants, and they were asked to respond to questions on a prepared and copied questionnaire form.

The ladies themselves used self-administered questionnaires to gather the data. No questionnaire that was explicitly relevant to knowledge assessment among women was discovered after a thorough literature study. Gestational Diabetes Mellitus Knowledge Questionnaire (GDMKQ) was created by a research team. The Diabetes Knowledge Questionnaire (DKN), a well-validated instrument for knowledge evaluation among type 1 and type 2 diabetes mellitus patients, served as the basis for the questionnaire's main themes. A few changes were made, and additional inquiries specifically pertaining to GDM were included. To verify that the questionnaire's

core meaning was retained, it was translated into Arabic and then back into English. The translated version was then assessed for both face and content validity. Final version of questionnaire consists of two parts:

- Part 1: Questions on the patient's personal characteristics and sociodemographic information about the participants, such as name, age, education, employment, place of residence, number of pregnancies, living children, history of preconception planning, and family history, are asked without assigning a score.
- Part 2: The 15 questions used to gauge participants' knowledge of gestational diabetes mellitus were organized into five major categories: basic information about GDM (3 questions), risk factors (3 questions), the importance of food and diet (3 questions), treatment (3 questions), and outcomes/complications (3 questions). To prevent participants from making unneeded assumptions, all questions included multiple-choice answers with the response "I don't know" as one of the options. Every correct response received a 1, while every incorrect response received a 0. A higher score indicates more understanding of GDM. As a result, the greatest score is 15, and the lowest is 0.

Personal information, general understanding of GDM, awareness of risk factors, diet values, complications, and treatment of GDM were the subject of a standardized questionnaire.

Participants were rated as having insufficient knowledge if they had a score of 0–8 and adequate for those who received a score of more than 12.

# Statistical analysis

STATA 14.2 was used to examine the data (Stata Statistical Software: Release 14.2 College Station, TX, USA, StataCorp LP). Mean, standard deviation, median, and range were the metrics utilized to express quantitative data. Unpaired Student *t*-tests, Mann–Whitney tests, and chi-square tests were also utilized. If the *p*-value was less than 0.05, it was deemed significant.

## **Results**

# Participant demographics

A total of 500 women included in this study, their mean of age was  $34.96 \pm 11.44$  years ranging from 16 to 65 years with age group of  $\geq$  35 years was the most frequent (46%). More than half of the participants were living in rural areas (58%). Also, more than half of participants had high-level education (54.4%). Occupation distribution was 43.4% employer, 33.6% housewives, 10.2% students, 7% nurse, and 5.8% medical doctors. With reference

of gravidity, 46.2% had G3 or more with mean gravidity was  $2.43\pm2.12$ . The mean number of children was  $2.18\pm1.87$  with 42.4% of women who had 3 children or more (Table 1).

# Knowledge and history of diabetes

A total of 70.6% of participants had knowledge about diabetes mellitus in general. General knowledge as others experience or advices was the most common source of knowledge (40.5%) followed by Internet (32%) then mass media (14.2%), and study (13.3%). Less than half (47.8%) had family history of diabetes mellitus (Fig. 1). A total of

**Table 1** Participant demographics in the research

| Items                  | Study participants (no. = 500) |       |  |  |  |
|------------------------|--------------------------------|-------|--|--|--|
|                        | No                             | %     |  |  |  |
| Age                    |                                |       |  |  |  |
| < 25 years             | 93                             | 18.6% |  |  |  |
| 25–29 years            | 117                            | 23.4% |  |  |  |
| 30–34 years            | 60                             | 12.0% |  |  |  |
| ≥35 years              | 230                            | 46.0% |  |  |  |
| Mean±SD                | $34.96 \pm 11.44$              |       |  |  |  |
| Range                  | 16.0-65.0                      |       |  |  |  |
| Residence              |                                |       |  |  |  |
| Rural                  | 290                            | 58.0% |  |  |  |
| Urban                  | 210                            | 42.0% |  |  |  |
| Education level        |                                |       |  |  |  |
| Low education          | 24                             | 4.8%  |  |  |  |
| Intermediate education | 204                            | 40.8% |  |  |  |
| High education         | 272                            | 54.4% |  |  |  |
| Occupation             |                                |       |  |  |  |
| Medical doctor         | 29                             | 5.8%  |  |  |  |
| Nurse                  | 35                             | 7.0%  |  |  |  |
| Employer               | 217                            | 43.4% |  |  |  |
| Housewife              | 168                            | 33.6% |  |  |  |
| Student                | 51                             | 10.2% |  |  |  |
| Gravidity              |                                |       |  |  |  |
| G0                     | 126                            | 25.2% |  |  |  |
| G1                     | 63                             | 12.6% |  |  |  |
| G2                     | 80                             | 16.0% |  |  |  |
| ≥G3                    | 231                            | 46.2% |  |  |  |
| Mean ± SD              | $2.43 \pm 2.12$                |       |  |  |  |
| Range                  | 0.0-13.0                       |       |  |  |  |
| No. of children        |                                |       |  |  |  |
| 0                      | 137                            | 27.4% |  |  |  |
| 1                      | 64                             | 12.8% |  |  |  |
| 2                      | 87                             | 17.4% |  |  |  |
| ≥3                     | 212                            | 42.4% |  |  |  |
| Mean±SD                | 2.18 ± 1.87                    |       |  |  |  |
| Range                  | 0.0-9.0                        |       |  |  |  |

11.4% had history of gestational diabetes. There were 173 (34.6%) women who have preconception planning. There were 55 (11%) current diabetic patients in which 44 out of them were on oral drugs while 11/55 were on insulin therapy, and just 17 (30.1%) of them have preconception planning using contraception method (Table 2).

# Response of studied participants to all questionnaire items

The right answers recorded for questions related to basic knowledge were 36% for question 1, 47.2% for question 2, and 39.8% for question 3, whereas the wrong answers were noted for question 1 were 64%, 52.8% for question 2, and 60.2% for question 3. The right answers recorded for questions related to knowledge about risk factors were 78.4% for question 4, 61.6% for question 5, and 57.4% for question 6, whereas the wrong answers were noted for question 4 were 21.6%, 38.4% for question 5, and 42.6% for question 6. The right answers recorded for questions related to knowledge about diet/food values were 74.8% for question 7, 80.8% for question 8, and 88.8% for question 9, whereas the wrong answers were noted for question 7 were 25.2%, 19.2% for question 8, and 11.2% for question 9. The right answers recorded for questions related to knowledge about management of GDM were 81.2% for question 10, 53.2% for question 11, and 78.2% for question 12, whereas the wrong answers were noted for question 10 were 18.8%, 46.8% for question 11, and 21.8% for question 12. The right answers recorded for questions related to knowledge about GDM complications/outcomes were 44.6% for question 13, 70.2% for question 14, and 69.8% for question 15, whereas the wrong answers were noted for question 13 were 55.4%, 29.8% for question 14, and 30.2% for question 15 (Table 3).

# Association between degree of knowledge and demographic characteristics

The mean total knowledge score was  $9.62 \pm 4.24$ . A total of 69.6% of study participants showed good knowledge ( $\geq 9$ ), while 30.4% of them showed low knowledge about gestational diabetes.

Higher age showed substantial high knowledge compared to less age (p < 0.001). Also, there was substantial proportional connection between degree of knowledge and education level (p = 0.003), occupation (p < 0.001), gravidity (p < 0.001), and number of children (p < 0.001). Meanwhile, no substantial relation was observed between degree of knowledge and residence (p > 0.05) (Table 4).

# Relation between degree of knowledge and history of diabetes

There was substantial relation between degree of knowledge and about source of knowledge (p < 0.001) as there

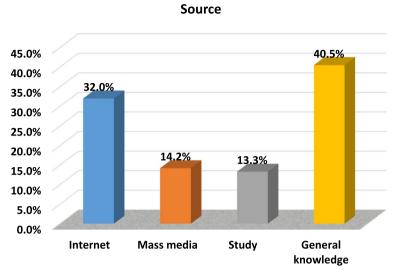



Fig. 1 Distribution of study participants regarding source

**Table 2** Knowledge and history of diabetes among study participants

|                                                       | Study<br>participant<br>(no. = 500) |       |
|-------------------------------------------------------|-------------------------------------|-------|
|                                                       | No                                  | %     |
| Knowledge about diabetes                              |                                     |       |
| No                                                    | 147                                 | 29.4% |
| Yes                                                   | 353                                 | 70.6% |
| Source of knowledge (in good knowledge) ( $n = 353$ ) |                                     |       |
| Internet                                              | 113                                 | 32.0% |
| Mass media                                            | 50                                  | 14.2% |
| Study                                                 | 47                                  | 13.3% |
| General knowledge as others experiences or advices    | 143                                 | 40.5% |
| Family history of diabetes                            |                                     |       |
| No                                                    | 261                                 | 52.2% |
| Yes                                                   | 239                                 | 47.8% |
| History of gestational diabetes                       |                                     |       |
| No                                                    | 443                                 | 88.6% |
| Yes                                                   | 57                                  | 11.4% |
| Preconception planning                                |                                     |       |
| No                                                    | 327                                 | 65.4% |
| Yes                                                   | 173                                 | 34.6% |
| Current diabetic patients                             |                                     |       |
| No                                                    | 445                                 | 89.0% |
| Yes                                                   | 55                                  | 11.0% |
| Preconception planning in (55 diabetic)               |                                     |       |
| No                                                    | 38                                  | 69.9% |
| Yes                                                   | 17                                  | 30.1% |
| Type of hypoglycemic TTT (55 diabetic)                |                                     |       |
| Insulin                                               | 11                                  | 20.0% |
| Oral                                                  | 44                                  | 80.0% |

was substantial increase of high knowledge score in cases with general knowledge. There was substantial positive relation between degree of knowledge and family history of diabetes ( $p\!=\!0.038$ ) as there was substantial increase of high knowledge score in cases who had positive history of family history of diabetes. In addition, there was substantial positive relation between degree of knowledge and history of gestational diabetes ( $p\!<\!0.001$ ) as cases who had positive history of gestational diabetes had substantial higher knowledge score (Table 5).

# Discussion

One of the frequent issues that affect the health of pregnant women and babies, gestational diabetes mellitus (GDM), makes gestation a high-risk pregnancy. GDM, a subtype of diabetes mellitus, is identified by the beginning or first identification of glucose intolerance during pregnancy [11].

Due to better glycemic management before and throughout organogenesis, preconception treatment for diabetic women lowers the risk of spontaneous abortion and congenital abnormalities. Optimizing glycemic control during pregnancy includes considering genetic counseling, contraception options, managing diabetic complications, and assessing the psychosocial elements of pregnancy, childbirth, and diabetes care [4].

In our study, a total of 70.6% of participants had knowledge about diabetes mellitus in general. General knowledge as other experiences or advice was the most common source of knowledge (40.5%) followed by Internet (32%), then mass media (14.2%), and study (13.3%). Less than half (47.8%) had family history of diabetes mellitus. A total of 11.4% had history of gestational diabetes.

**Table 3** Response of studied participants to all questionnaire items (N = 500)

| tems                                                                                                    |         | Study participants (no. = 500) |               |       |  |
|---------------------------------------------------------------------------------------------------------|---------|--------------------------------|---------------|-------|--|
|                                                                                                         | Right a | nswers                         | Wrong answers |       |  |
|                                                                                                         | No      | %                              | No            | %     |  |
| Basic knowledge about GDM                                                                               |         |                                |               |       |  |
| Q. 1 Gestational diabetes is a condition                                                                | 180     | 36.0%                          | 320           | 64.0% |  |
| Q. 2 The level of sugar in a patient with gestational diabetes is irregular when                        | 236     | 47.2%                          | 264           | 52.8% |  |
| Q. 3 What is the best way to measure the sugar level for a woman who suffers from gestational diabetes? | 199     | 39.8%                          | 301           | 60.2% |  |
| Knowledge about risk factors                                                                            |         |                                |               |       |  |
| Q. 4 You are at risk of developing gestational diabetes if you suffer from                              | 392     | 78.4%                          | 108           | 21.6% |  |
| Q. 5 You are at high risk of gestational diabetes if                                                    | 308     | 61.6%                          | 192           | 38.4% |  |
| Q. 6 You are more likely to develop gestational diabetes if                                             | 287     | 57.4%                          | 213           | 42.6% |  |
| Knowledge about diet/food values                                                                        |         |                                |               |       |  |
| Q. 7 If you have gestational diabetes, you should reduce the meals that contain a high percentage of    | 374     | 74.8%                          | 126           | 25.2% |  |
| Q. 8 What meals can a gestational diabetes patient eat without restrictions                             | 404     | 80.8%                          | 96            | 19.2% |  |
| Q. 9 What is the nutritional value of rice?                                                             | 444     | 88.8%                          | 56            | 11.2% |  |
| Knowledge about management of GDM                                                                       |         |                                |               |       |  |
| Q. 10 The most common sign of high blood sugar is                                                       | 406     | 81.2%                          | 94            | 18.8% |  |
| Q. 11 The normal value of blood sugar when fasting is                                                   | 266     | 53.2%                          | 234           | 46.8% |  |
| Q. 12 Is preconception contraception having a value for women especially diabetic?                      | 391     | 78.2%                          | 109           | 21.8% |  |
| Knowledge about GDM complications/outcomes                                                              |         |                                |               |       |  |
| Q. 13 In case of irregular sugar during pregnancy, your baby may suffer from                            | 223     | 44.6%                          | 277           | 55.4% |  |
| Q. 14 If you suffer from gestational diabetes, you have                                                 | 351     | 70.2%                          | 149           | 29.8% |  |
| Q. 15 With high blood sugar during pregnancy, rates of                                                  | 349     | 69.8%                          | 151           | 30.2% |  |

There were 55 (11%) current diabetic patients in which 44 out of them were on oral drugs while 11/55 were on insulin therapy.

Also, Elmekresh et al. [12] investigated 450 women and found that 73.5% were aware of the disease and found that the media, educational institutions, and family members were said to be the main sources of GDM awareness. However, fewer women (14%) cited doctors and health-care professionals as their informational source.

A study conducted in India to identify leading sources of information regarding GDM among women found that television and radio were the major sources of information about GDM (40%), followed by doctors (13.3%), and hospital boards and charts (18.3%) [13].

Regarding Thomas et al. [14] and Kondamuri et al. [15], printed and electronic media were the most significant sources of information. Social contacts, educational/professional experiences, and family history of diabetes and GDM were additional sources of information.

Regarding our findings, the right answers recorded for questions related to knowledge about risk factors were 78.4% for question 4, 61.6% for question 5, and 57.4% for question 6, whereas the wrong answers were noted for

question 4 were 21.6%, 38.4% for question 5, and 42.6% for question 6.

Price et al. [16] stated that only one lady, out of the 49% who knew gestational diabetes may develop for the first time during pregnancy, correctly recognized all four GDM risk factors.

In our present study, the mean total knowledge score was  $9.62\pm4.24$ . A total of 69.6% of study participants showed good knowledge ( $\geq 9$ ), while 30.4% of them showed low knowledge about gestational diabetes.

In the same context, Shriraam et al. [17] who found that overall, 56.7% of women had fair understanding of GDM, 25.8% had poor knowledge, and 17.5% had strong knowledge. Seven was the average knowledge score.

Also, Alnaeem et al. [18] stated that GDM knowledge score among participants ranged from 0 to 95.8%, with an average of  $51.5\pm17.85\%$ . Fair knowledge of GDM was the highest percentage at 64%, while 17.5% of the respondents had poor knowledge, and 18.5% had good knowledge of GDM.

Our results showed that higher age showed significant high knowledge compared to less age (p < 0.001). Also, there was substantial proportional connection between

**Table 4** Association between degree of knowledge and demographic characteristics

| Items                        | Low knowledge $\leq$ 8 (no. = 152) |            |         | High knowledge (≥ 9)<br>(no. = 348) |            |         | Test value               | <i>p</i> -value |
|------------------------------|------------------------------------|------------|---------|-------------------------------------|------------|---------|--------------------------|-----------------|
|                              | No                                 | % (column) | % (row) | No                                  | % (column) | % (row) |                          |                 |
| Age                          |                                    |            |         |                                     |            |         |                          |                 |
| < 25 years (93)              | 48                                 | 31.6%      | 51.6%   | 45                                  | 8.4%       | 12.9%   | $\chi^2 = 25.88$         | < 0.001 (HS)    |
| 25–29 years (117)            | 34                                 | 22.4%      | 29%     | 83                                  | 77%        | 23.9%   |                          |                 |
| 30-34 years (60)             | 17                                 | 11.2%      | 28.3%   | 43                                  | 71.7%      | 12.4%   |                          |                 |
| ≥ 35 years (230)             | 53                                 | 34.9%      | 23%     | 177                                 | 77%        | 50.9%   |                          |                 |
| Mean±SD                      | 32.34 ± 11.75                      |            |         | 36.10 ± 11.13                       |            |         | Z <sub>MWU</sub> =4.068  | < 0.001 (HS)    |
| Range                        | 16.0-60.0                          |            |         | 18.0-65.0                           |            |         |                          |                 |
| Residence                    |                                    |            |         |                                     |            |         |                          |                 |
| Rural (290)                  | 81                                 | 53.3%      | 27.9%   | 209                                 | 72.1%      | 60.1%   | $\chi^2 = 1.99$          | 0.158 (NS)      |
| Urban (210)                  | 71                                 | 46.7%      | 33.8%   | 139                                 | 66.2%      | 39.9%   |                          |                 |
| Education level              |                                    |            |         |                                     |            |         |                          |                 |
| Low education (24)           | 8                                  | 5.3%       | 33.6%   | 16                                  | 4.6%       | 66.7%   | $\chi^2 = 8.784$         | 0.003 (HS)      |
| Intermediate education (204) | 67                                 | 44.1%      | 32.8%   | 137                                 | 39.4%      | 67.2%   |                          |                 |
| High education (272)         | 77                                 | 50.7%      | 28.3%   | 195                                 | 56.0%      | 71.7%   |                          |                 |
| Occupation                   |                                    |            |         |                                     |            |         |                          |                 |
| Medical doctor (29)          | 0                                  | 0.0%       | 0.0%    | 29                                  | 8.3%       | 100%    | $\chi^2 = 0.516$         | < 0.001 (HS)    |
| Nurse (35)                   | 8                                  | 5.3%       | 22.9%   | 27                                  | 7.8%       | 77.1%   |                          |                 |
| Employer (217)               | 51                                 | 33.6%      | 23.5%   | 166                                 | 47.7%      | 76.5%   |                          |                 |
| Housewife (168)              | 66                                 | 43.4%      | 39.3%   | 102                                 | 29.3%      | 60.7%   |                          |                 |
| Student (51)                 | 27                                 | 17.8%      | 52.9%   | 24                                  | 6.9%       | 47.1%   |                          |                 |
| Gravidity                    |                                    |            |         |                                     |            |         |                          |                 |
| G0 (126)                     | 57                                 | 37.5%      | 45.2%   | 69                                  | 19.8%      | 54.8%   | $\chi^2 = 22.75$         | < 0.001 (HS)    |
| G1 (63)                      | 19                                 | 12.5%      | 30.2%   | 44                                  | 12.6%      | 69.8%   |                          |                 |
| G2 (80)                      | 27                                 | 17.8%      | 33.8%   | 53                                  | 15.2%      | 66.3%   |                          |                 |
| ≥G3 (231)                    | 49                                 | 32.2%      | 21.2%   | 182                                 | 52.3%      | 78.8%   |                          |                 |
| Mean±SD                      | 1.89 ± 2.02                        |            |         | 2.67 ± 2.12                         |            |         | $Z_{MWIJ} = 4.193$       | < 0.001 (HS)    |
| Range                        | 0.0-8.0                            |            |         | 0.0-13.0                            |            |         | WWVO                     |                 |
| No. of children 53           |                                    |            |         |                                     |            |         |                          |                 |
| 0 (137)                      | 59                                 | 182%       | 43.1%   | 78                                  | 22.4%      | 58.9%   | $\chi^2 = 18.49$         | < 0.001 (HS)    |
| 1 (64)                       | 18                                 | 11.8%      | 28.1%   | 46                                  | 13.2%      | 71.9%   |                          | . ,             |
| 2 (87)                       | 29                                 | 19.1%      | 33.3%   | 58                                  | 16.7%      | 66.7%   |                          |                 |
| ≥3 (212)                     | 46                                 | 30.3%      | 21.7%   | 166                                 | 47.7%      | 78.3%   |                          |                 |
| Mean ± SD                    | 1.74 ± 1.84                        |            |         | 2.37 ± 1.85                         |            |         | Z <sub>MWU</sub> = 3.831 | < 0.001 (HS)    |
| Range                        | 0.0-9.0                            |            |         | 0.0-9.0                             |            |         | 141140                   | ,               |

degree of knowledge and occupation (p < 0.001), gravidity (p < 0.001), and number of children (p < 0.001).

This came in agreement with Alnaeem et al. [18] that participants with poor knowledge were, on average, younger ( $26.4 \pm 5.6$  years old) than were those with fair or good knowledge about the disorder.

Our results showed that there was no substantial relation was observed between degree of knowledge and residence.

In contrast with our results, Prabhu et al. [15] studied that when compared to participants from rural and

semiurban regions, individuals from urban areas exhibited statistically substantial knowledge scores on GDM treatment options and prenatal and neonatal problems (p = 0.015, p = 0.028, respectively).

Our study showed that there was substantial relation between degree of knowledge and about source of knowledge (p<0.001) as there was substantial increase of high knowledge score in cases with general knowledge, but there is no significant relation between high knowledge and residence, and that can be explained by the majority of our governorate which are rural areas, and at hat

**Table 5** Relation between degree of knowledge and history of diabetes

| Items                                                   | Low knowledge ≤ 8<br>(no. = 152) |            |         | High knowledge (≥ 9)<br>(no. = 348) |            |         | Test value       | <i>p</i> -value |
|---------------------------------------------------------|----------------------------------|------------|---------|-------------------------------------|------------|---------|------------------|-----------------|
|                                                         | No                               | % (column) | % (row) | No                                  | % (column) | % (row) |                  |                 |
| Source of knowledge (353)                               |                                  |            |         |                                     |            |         |                  |                 |
| Internet (113)                                          | 13                               | 8.6%       | 11.5%   | 100                                 | 28.7%      | 88.5%   | $\chi^2 = 280.0$ | < 0.001 (HS)    |
| Mass media (50)                                         | 0                                | 0.0%       | 0.0%    | 50                                  | 14.4%      | 100.0%  |                  |                 |
| Study (47)                                              | 0                                | 0.0%       | 0.0%    | 47                                  | 13.5%      | 100.0%  |                  |                 |
| General knowledge as other experiences or advices (143) | 17                               | 11.2%      | 11.9%   | 126                                 | 36.2%      | 88.1%   |                  |                 |
| Family history of diabetes                              |                                  |            |         |                                     |            |         |                  |                 |
| No                                                      | 90                               | 59.2%      | 34.5%   | 171                                 | 49.1%      | 65.5%   | $\chi^2 = 4.30$  | 0.038 (S)       |
| Yes                                                     | 62                               | 40.8%      | 25.9%   | 177                                 | 50.9%      | 74.1%   |                  |                 |
| History of gestational diabetes                         | ;                                |            |         |                                     |            |         |                  |                 |
| No                                                      | 146                              | 96.1%      | 33.0%   | 297                                 | 85.3%      | 67.0%   | $\chi^2 = 12.01$ | 0.001 (HS)      |
| Yes                                                     | 6                                | 3.9%       | 10.5%   | 51                                  | 14.7%      | 89.5%   |                  |                 |
| Type of hypoglycemic TTT                                |                                  |            |         |                                     |            |         |                  |                 |
| Insulin                                                 | 2                                | 1.3%       | 18.2%   | 9                                   | 2.6%       | 81.8%   | $\chi^2 = 16.4$  | < 0.001 (HS)    |
| Oral                                                    | 2                                | 1.3%       | 4.5%    | 42                                  | 12.1%      | 95.5%   |                  |                 |

 $p \le 0.05$  significant,  $p \le 0.01$  highly significant (HS),  $\chi^2$  chi-square test, ZMWU Mann-Whitney U-test

places, the familial relations build up the general knowledge and experiences among women especially family members.

Damm et al. [19] emphasized that a lack of knowledge about GDM might lead to a delayed diagnosis or failure to comply with recommended medication, thus contributing to poor management of the condition. Therefore, the authors recommended educating women to ensure that they sought a diagnosis before conception.

This came in line with previous studies that have revealed that a family history of DM is related to a greater risk of an individual developing GDM [20, 21].

# **Conclusions**

A total of 70.6% of participants had knowledge about diabetes mellitus in general which is satisfactory result among Sohag Governorate women. General knowledge as other experiences or advices was the most common source of knowledge followed by Internet and then mass media, reading, and study. There was significant positive proportional relationship between degree of knowledge and occupation, higher age, family history of diabetes, history of gestational diabetes, and level of education. This study paves the path for future research to newer methods of increasing the awareness of GDM and its complications; this knowledge awareness is the initial step toward preventing any disease.

The inclusion of GDM information in course curricula should begin at the high school and college levels. It should pay greater attention to women who are

younger and have less education. The physicians must educate the healthcare professionals, and both the doctors and the healthcare professionals must do more to raise awareness among pregnant women. Knowledge of the long-term morbidity of GDM on the mother and neonate should be addressed since it affects two generations, which will enhance screening. Health professionals, particularly general practitioners and endocrinologists, need to be proactive in initiating conversations around pregnancy planning and revisiting the topic yearly, including providing advice on safe, effective forms of contraception to avoid unintended pregnancy.

#### **Abbreviations**

BMI Body Mass Index

CDC United States Centers for Disease Control DKN Diabetes knowledge questionnaire

DM Diabetes mellitus

GDM Gestational diabetes mellitus

GDMKQ Gestational Diabetes Mellitus Knowledge Questionnaire

IDF International Diabetes Federation

#### Authors' contributions

AAA and MG provided the study concept and design. EE collect the data. HS, MG, and EE analyzed and interpreted the data. MG and EE drafted the manuscript. All authors critically revised the manuscript. All authors read and approved the final version of the manuscript.

#### **Funding**

Nil.

# Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

#### **Declarations**

#### Ethics approval and consent to participate

Informed consent had been taken from all patients to participate and to publish this research. The research was approved by Medical Ethics Committee of Sohag University, Faculty of Medicine, according to the committee standard operating procedure guidelines on 08/11/2021 under IBR registration number: Soh-Med-21–11-05.

#### Competing interests

The authors declare that they have no competing interests.

Received: 15 April 2023 Accepted: 2 July 2023 Published online: 10 July 2023

#### References

- Farrar DJ (2016) Hyperglycemia in pregnancy: prevalence, impact, and management challenges. Int J Women's Health 8:519
- Eltoony LF et al (2021) Prevalence and Risk Factors for Gestational Diabetes in Aswan, Egypt According to International Association of the Diabetes and Pregnancy Study Groups (IADPSG). Egypt J Hosp Med 82(4):701-707
- Muche AA, Olayemi OO, Gete YK (2019) Prevalence and determinants of gestational diabetes mellitus in Africa based on the updated international diagnostic criteria: a systematic review and meta-analysis. Arch Public Health 77(1):1–20
- Wang H et al (2022) IDF Diabetes Atlas: estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group's criteria. Diabetes Res Clin Pract 183:109050
- Lee KW et al (2018) Prevalence and risk factors of gestational diabetes mellitus in Asia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18(1):1-20
- O'Sullivan E et al (2011) Atlantic Diabetes in Pregnancy (DIP): the prevalence and outcomes of gestational diabetes mellitus using new diagnostic criteria. Diabetologia 54(7):1670–1675
- Curtis KM et al (2016) US medical eligibility criteria for contraceptive use, 2016. Morb Mortal Wkly Rep 65(3):1–103
- Hibbert EJ et al (2018) Preconception care and contraceptive use among Australian women with diabetes mellitus. Australian J Gen Pract 47(12):877–883
- 9. Cheung NW (2009) The management of gestational diabetes. Vasc Health Risk Manag 5:153
- Hussain Z, Yusoff ZM, Sulaiman SAS (2015) Evaluation of knowledge regarding gestational diabetes mellitus and its association with glycaemic level: a Malaysian study. J Primary Care diabetes 9(3):184–190
- Gupta Y et al (2022) Continuous glucose monitoring system profile of women diagnosed as gestational diabetes mellitus by International Association of Diabetes and Pregnancy Study Groups criteria and labeled as normoglycemic by alternate criteria in early pregnancy. J Diabetes Investig 13(10):1753–1760
- Elmekresh A et al (2017) Gestational diabetes awareness in women of childbearing age in Sharjah. Global J Obes Diabetes Metab Syndr 4(2):51–53
- 13. Morampudi S et al (2017) The challenges and recommendations for gestational diabetes mellitus care in India: a review. Front Endocrinol 8:56
- Thomas S, Pienyu R, Rajan SK (2020) Awareness and knowledge about gestational diabetes mellitus among antenatal women. Psychology Community Health 8(1):237–248
- Kondamuri SD, Samal S, Sen M (2021) Knowledge of gestational diabetes mellitus among pregnant women in a semiurban hospital-a cross-sectional study. Clin Epidemiol Glob Health 12:100854
- Price LA et al (2017) Awareness of gestational diabetes and its risk factors among pregnant women in Samoa. Hawai'i J Med Public Health 76(2):48
- Shriraam V et al (2013) Awareness of gestational diabetes mellitus among antenatal women in a primary health center in South India. Indian Indian J Endocrinol Metab 17(1):146

- Alnaeem LS (2019) Awareness of gestational diabetes among antenatal women at the King Fahd Military Medical Complex Hospital in Dhahran, Saudi Arabia. Egyptian J Hosp Med 75(5):2784–2793
- Damm P et al (2016) Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia 59(7):1396–1399
- Kim C et al (2009) Does frank diabetes in first-degree relatives of a pregnant woman affect the likelihood of her developing gestational diabetes mellitus or nongestational diabetes? Am J Obstet Gynecol 201(6):576-e1-576 e6
- Moosazadeh M et al (2017) Family history of diabetes and the risk of gestational diabetes mellitus in Iran: a systematic review and meta-analysis. Diabetes Metab Syndr 11:S99–S104

### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

# Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com