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Abstract 

Background: Alzheimer’s disease (AD), cardiovascular disease (CVD), and diabetes are some of the most common 
causes of morbidity and mortality among the aging populations and cause a heavy burden on the worldwide health-
care system. In this review, we briefly highlighted cellular inflammation-based pathways of diabetes mellitus and CVD 
through receptor for advanced glycation end products AGEs or RAGE leading to Alzheimer’s disease and interrelation 
between these vascular and metabolic disorders. The articles were retrieved from Google Scholar, Science Direct, 
and PubMed databases using the following terms: Alzheimer’s; AGEs; RAGE; RAGE in Alzheimer’s; AGEs in Alzheimer’s; 
RAGE in diabetes; RAGE related pathways of CVD; RAGE in hypertension; RAGE and RAS system; RAGE and oxidative 
stress.

Main body of the abstract: AD is a neurodegenerative disease characterized by cognitive dysfunction and neuronal 
cell death. Vascular complications like hypertension, coronary artery disease, and atherosclerosis as well as metabolic 
syndromes like obesity and diabetes are related to the pathophysiology of AD. RAGE plays significant role in the onset 
and progression of AD. Amyloid plaques and neurofibrillary tangles (NFT) are two main markers of AD that regulates 
via RAGE and other RAGE/ligands interactions which also induces oxidative stress and a cascade of other cellular 
inflammation pathways leading to AD. Though AD and diabetes are two different disorders but may be inter-linked 
by AGEs and RAGE. In long-term hyperglycemia, upregulated AGEs interacts with RAGE and produces reactive oxygen 
species which induces further inflammation and vascular complications. Aging, hypercholesterolemia, atherosclerosis, 
hypertension, obesity, and inflammation are some of the main risk factors for both diabetes and dementia. Chronic 
hypertension and coronary artery disease disrupt the functions of the blood-brain barrier and are responsible for the 
accumulation of senile plaques and NFTs.

Short conclusion: RAGE plays a role in the etiology of Aβ and tau hyperphosphorylation, both of which contribute 
to cognitive impairment. So far, targeting RAGE may provide a potential sight to develop therapies against some 
metabolic disorders.
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Background
Alzheimer’s disease (AD) is one of the most common 
causes of dementia for humans of old age. Extensive 
studies have suggested that the pathological changes 
that take place in the AD brain include the formation 
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of senile plaques (SP), neurofibrillary tangles (NFT), 
and neuronal loss [1]. Senile plaques are largely found 
in the hippocampus, amygdala, and neocortex in the 
brain of AD patients and consist of dystrophic neurites 
[2]. The receptors for advanced glycation end-products 
(RAGE) are considered to be playing an important role 
in neurodegenerative physiological changes, which fur-
ther progress toward AD. This receptor is thought to 
be a promoting factor for synaptic and neuronal circuit 
dysfunction, both of which are the material structure of 
cognition, as well as the physiological and pathological 
basis of cognition [3].

RAGE plays a significant role in other physiological and 
pathological progressions as it can bind to a large num-
ber of ligands. And AGEs are one of the crucial ligands 
of RAGE. Advanced glycation end-products (AGEs) are 
modified, non-functioning proteins or lipids which are 
non-enzymatically glycated and oxidized after exposure 
to the aldose sugars. More than 30 years of research is 
connoting that AGEs have been interlinked with aging 
and neurodegenerative diseases, including AD [4–7]. 
AGEs unravel many of the neuropathological and bio-
chemical features of AD such as glial induction of oxida-
tive stress, extensive protein crosslinking, and neuronal 
cell death [8]. AGEs are mainly derived from two sources, 
from dietary intake and internally produced in the body 
[9]. RAGE is a 35kD transmembrane receptor which is 
the receptor for AGEs and is categorized to the immuno-
globulin superfamily [10, 11]. Two isoforms of RAGE can 
be found, of which one is membrane-bound form and 
the other one is a soluble form known as mRAGE and 
sRAGE respectively [3]. RAGE is involved in Alzheimer’s 
through amyloid-beta production, Aβ clearance, synaptic 
damage, and neuronal circuit dysfunction. Additionally, 
RAGE-Aβ interaction controls the bi-directional cross-
link between peripheral and central systems in the brain 
[12].

There is an increasing amount of evidence that shows 
that AGEs promote aging, neurodegeneration, cognitive 
impairment, and other vascular complications through 
AGE-RAGE interaction and pathways induced by the 
process [13]. Cardiovascular diseases (CVD), obesity, 
diabetes, hypercholesterolemia, renal failure, traumatic 
brain injury, and different inflammatory factors are 
directly or indirectly related to the progression of AD 
via AGEs-RAGE reactions and/or RAGE-ligands-medi-
ated cytotoxicity. It is not clear how AD and diabetes are 
interlinked precisely but there are several from which it is 
evident that diabetes and diabetes-related neuropathy are 
risk factors for AD and dementia. Excessive production 
of AGEs due to hyperglycemia, impaired insulin growth 
factor, and oxidative stress are considered to be crucial 
factors to the onset of AD [14].

In our present study, a literature search was carried 
out to retrieve the relevant articles, mainly from elec-
tronic databases such as Google Scholar (https:// schol ar. 
google. com/), Science Direct (https:// www. scien cedir ect. 
com/), and PubMed (https:// pubmed. ncbi. nlm. nih. gov/). 
We executed our search using the following terms: Alz-
heimer’s; AGEs; RAGE; RAGE in Alzheimer’s; AGEs in 
Alzheimer’s; RAGE in diabetes; RAGE related pathways 
of CVD; RAGE in hypertension; RAGE and RAS system; 
RAGE and oxidative stress with the timeframe from 2006 
to 2021. We also considered some quality articles outside 
the aforesaid timeframe to support the current informa-
tion. Original research articles, review articles, commen-
taries, and letters to the editor were included whereas 
poster papers, advertisements, thesis works, preprints, 
and published studies in non-English languages were 
excluded. Our main focus was to study the common 
factors and targets of AD, diabetes, and CVD which is 
mainly oxidative stress and cellular inflammation related 
to RAGE and its interaction with AGEs and other ligands. 
We further studied the possible mechanisms as well as 
pathways related to these disorders and tried to establish 
an association among them. The overview of the relation-
ships among the aforementioned diseases is represented 
in Fig. 1.

Alzheimer disease and roles of RAGE
RAGE in senile plaque formation
It was proposed that overproduction of Aβ and/or failure 
of Aβ clearance and deposition of Aβ into the brain are 
the cause of SP formation in the AD brain. It also showed 
the importance of RAGE in the production and clear-
ance of Aβ [3]. The equilibrium of synthesis, reuptake, 
and clearance of Aβ put a steady-state level in the brain 
but any factor that hampers this equilibrium or causes 
the failure of clearance effectively can cause the accumu-
lation of Aβ, which further progress to the formation of 
plaques [15]. Among the several mechanisms of Aβ clear-
ance, the low-density lipoprotein receptor-related protein 
1(LRP-1) and RAGE acts on the Aβ transport system. 
It is known that RAGE acts as the primary transporter 
of Aβ into the brain whereas LRP-1 transports Aβ out 
of the brain. The tight junction is identified as the basic 
structure of the blood-brain barrier (BBB) and RAGE-
mediated Aβ cytotoxicity to the brain microvascular 
endothelial cells. This results in the damage of BBB struc-
tural integrity. The disruption of tight junction proteins 
and induction of BBB integrity breakage are regulated by 
Aβ–RAGE interactions via  Ca2+-calcineurin (CaN) path-
way. On the other hand, disrupted micro-vessels coexist 
with Aβ plaque-deposited areas, elevated RAGE expres-
sion, and enhanced matrix metalloproteases (MMPs) 
secretion in the brains of 5XFAD mice. This indicated 
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a potential molecular pathway underlying Aβ–RAGE-
induced breakage of BBB integrity [3]. An in vivo study 
demonstrated that AD is associated with significant 
changes in the relative distribution of RAGE and LRP-1 
receptors at the BBB in the human hippocampus. The 
hypothesis that vascular amyloid deposition increases 
within the brains of AD patients is well supported by this 
study [16].

RAGE information of neurofibrillary tangles
Neurofibrillary tangles (NFTs) are one of the important 
markers of AD [17]. In the AD brain, the NFT is formed 
due to the accumulation of tau protein which is hyper-
phosphorylated and aggregated in neuron-forming 
helical filaments. This ultimately results in the loss of 
microtubule-binding capacity and proceeds toward neu-
rodegeneration [18]. One of the preliminary changes in 
the tangle formation process is the deposition of irregu-
larly phosphorylated tau protein in the AD brain [19]. 
Tau is generally found in neurons and is a heat-stable 

protein possessing six isoforms containing 352 to 441 
amino acids functioning in the assembly and stabilization 
of microtubules [20]. Normally, tau protein possesses a 
low tendency to aggregate and two phosphates are pre-
sent in each molecule. However, abnormal phospho-
rylation of tau induces the accumulation of insoluble tau 
aggregates and demonstrated the presence of eight phos-
phates per molecule of tau in the AD brain [21]. Hyper-
phosphorylation at the specific site of tau (e.g., S262 or 
S214) results in detachment of tau from the microtu-
bule and as a consequence microtubule disappears from 
the neuron. Intracellular transport is hampered, which 
causes degeneration of neurons [22].

AGEs can instigate tau hyper-phosphorylation which 
cause damage to synaptic protein, impair long-term 
potentiation (LTP) and deteriorate memory through 
RAGE/GSK-3 activation [23]. Both abnormally tau hyper-
phosphorylation and RAGE upregulation are engaged 
in the progression of neurodegeneration [24]. At multi-
ple AD-related sites, methylglyoxal (MG) can promote 

Fig. 1 The overview of the relationships among the Alzheimer’s disease, diabetes mellitus, and cardiovascular diseases
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hyperphosphorylation of tau in the neuroblastoma 2a 
cells while maintaining regular cell viability. Interestingly, 
MG increases the level of AGEs as well as RAGE and also 
activates the glycogen synthesis kinase-3β (GSK-3β) and 
p38 MARK. These data are evident for correlating the 
induction of tau hyper-phosphorylation with upregu-
lation of RAGE [25]. Another study involving astro-
cyte-derived S100B protein demonstrated that S100B 
stimulates JNK (c-Jun N-terminal kinases) phosphoryla-
tion through RAGE which then increases the expression 
of Dickoff-1. This in turn raises GSK-3β phosphorylation 
and catenin degradation which causes canonical Wnt 
pathway disruption and tau protein hyper-phosphoryl-
ation [26]. A study using PPARβ/δ-null mice also dem-
onstrated the presence of upregulated level of RAGE and 
tau hyper-phosphorylation [27].

RAGE and its role in oxidative stress
Oxidative stress is induced due to an imbalance of free 
radical production and detoxification [8]. In the body, 
when the anti-oxidant system cannot counterattack the 
free radicals or oxidative species sufficiently, it produces 
oxidative stress. The oxidative stress associated with 
AD includes AGEs, nitration, lipid peroxidation adduc-
tion products, carbonyl-modified neurofilament pro-
tein, and free carbonyls [28]. Previous studies showed 
that the significance of oxidative stress is associated with 
the increase of Aβ and NFT in AD [29]. The hyperphos-
phorylated tau protein of NFT is linked with oxidation 
via microtubule-associated protein kinase pathway and 
activation of the transcription factor, NF-κB (nuclear 
factor kappa-light-chain-enhancer of activated B cells) 
[30]. NFT in AD is significantly associated with oxidative 
damage. The production of oxidative species includes so 
many pathways and RAGE is playing a significant role as 
the AGEs, as well as Aβ, activates RAGE and the class A1 
scavenger receptors (SR-A1) to increase reactive oxygen 
species (ROS) production [28].

RAGE‑AGEs associated inflammation and cell injury 
preceding the AD
AGEs-RAGE interaction is a potential trigger for caus-
ing oxidative stress and inflammation which also acceler-
ates the aging process, consequently enhancing cognitive 
decline and impairment [31, 32]. It is well evident that 
RAGEs can also bind with other ligands and trigger sev-
eral signaling pathways which then results in chronic 
inflammation and cellular stress [33]. RAGE is respon-
sible for the formation of ROS and induction of tran-
scription factor NF-κB which increases the expression 
of various inflammatory cytokines and upregulation of 
RAGE itself [34, 35]. The two most hallmark patholo-
gies of AD are NFT and SP, which are produced by the 

enhanced oxidative stress and inflammation via RAGE-
AGEs or RAGE-ligand interactions. RAGE plays a crucial 
part in promoting oxidative stress, mitochondrial dys-
function, disrupted energy metabolism, and inflamma-
tion thus increasing synaptic dysfunction, promoting the 
pathogenesis of Aβ and tau hyper-phosphorylation. It is 
evident from different animal and human model studies 
that the concentration of AGEs is higher in Alzheimer’s 
patients compared to the normal brain [4]. The patho-
genesis of AGE is upregulated by some processes like 
diabetes mellitus (DM) or excessive blood glucose, cross-
linking of long-lived proteins with sugars, generation of 
methoxyl species, oxidative stress, ROS, and inflamma-
tory stimuli [3]. Some previous studies corroborated that 
AGEs are involved in an unending cycle of inflamma-
tion, cellular stress, and ROS production. AGEs may be 
associated with increased ROS production via multiple 
mechanisms, along with AGEs-RAGE ligation, decreased 
superoxide dismutase (SOD) and catalase activities, 
depleting glutathione stores, and activating protein 
kinase C [36, 37]. AGEs-RAGE ligation increases Aβ pro-
duction which then interacts with more RAGEs. Firstly, 
Aβ production is increased and accumulates amyloid 
plaques via AGEs-RAGE ligation. Secondly, Aβ activates 
the inflammatory state in the microglia and astrocytes 
cells of the brain which promotes further inflammation 
through various inflammatory factors. Thirdly, these 
inflammatory factors cause neurodegeneration and the 
death of neurons [5, 38–41].

Upregulation of RAGE increases the transportation of 
Aβ across the BBB into the brain, thereby reduces cere-
bral blood flow, and causes neuronal damage. Scientific 
evidence supports RAGE playing an important role in 
activating a positive feedback loop of Aβ-RAGE inter-
action. This promotes more cellular stress, and neuroin-
flammation which then increases Aβ production and Aβ 
cytotoxicity [42, 43]. RAGE increases Aβ production and 
neuro-inflammation in glial cells of the brain via various 
pathways like mitogen-activated protein kinase (MAPK), 
peroxisome proliferator-activated receptor- γ (PPAR-γ), 
transcriptional signaling cascade NF-κB, which further 
releases different inflammatory factors including inter-
leukin-1 beta(IL-1β), interleukin 1 (IL-1), interleukin 6 
(IL-6), plasminogen activator inhibitor-1 (PAI-1), tumor 
necrosis factor-α (TNF-α), monocyte chemoattractant 
protein-1(MCP-1), intercellular adhesion molecule-1 
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) 
that are all involved in the pathogenesis of AD [44]. Nor-
mally microglial cells act as a protective factor in response 
to any stress or inflammation in the brain. However, with 
the increased level of Aβ production, this becomes more 
inflammatory and their activity diminishes with the pro-
gression of senile plaques. When the Aβ level increases in 
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the microglial cells, it releases cytokines which activate β 
secretases (BACE1) and γ secretases to clear the Aβ but 
the inflammatory factors promote further Aβ prolifera-
tion and activation of microglial damage [45–47]. Addi-
tionally, from the animal studies, it is evident that in the 
astrocyte cells the NF-κB pathway was upregulated by 
the RAGE and increased amyloid plaques. This releases 
TNF-α, IL-B, COX2 cytokines, and directly stimulates 
expression of BACE1 and therefore increases the con-
version of amyloid precursor protein (APP) to toxic γ 
secretases. Thus, the reactive astrocytes are responsible 
for the Aβ accumulation and neurotoxicity [48–50].

RAGE‑mediated pathways of type 2 diabetes 
mellitus and AD
People are quite familiar with type 1 and type 2 diabetes. 
However, there has been a new type of diabetes which is 
type 3 diabetes or “Diabetes of the Brain.” Disease pro-
gression and symptoms of AD and type 3 diabetes are 
similar to such extent that AD is sometimes termed 
as type 3 diabetes albeit controversial in the use of this 
term. Difficulty in remembering recent events, mood and 
behavioral changes, linguistic problems, loss of moti-
vation, and spirit following cognitive impairment are 
some common symptoms in both cases [51–54]. There 
are shreds of evidence from the human study as well as 
from the animal model study which justified AD as type 
3 diabetes. From these in vivo, in vitro, and post mortem 
studies of human brains, it is demonstrated that insulin 
resistance in the brain and impaired insulin-like growth 
factor signaling are common main causes of vascular 
damage and dementia [55].

Cognitive dysfunction in long-term diabetes patients 
is a less explored topic. Obesity, hyperlipidemia, and 
diabetes are some of the variable risk factors for AD. 
AGE products produced by hyperglycemia and RAGE 
play an important role in both AD and DM [56]. AGEs-
RAGE interaction is associated with vascular aging and 
complications like DM, insulin resistance, AD, cancer 
growth, and metastasis by provoking oxidative stress, 
cell inflammation, and other pathways [57]. Kong et  al. 
in their recent research study depicted the mechanisms 
of RAGE as the common target between AD and DM 
and interlinked DM to AD through RAGE [14]. A large 
number of studies, e.g., the Rotterdam study, clinical tri-
als, and cellular imaging have been carried out to iden-
tify and demonstrate the link between type 2 diabetes 
mellitus (T2DM) related vascular complications (e.g., 
polyneuropathy, dementia) and AD-associated cognitive 
dysfunction. Long-term hyperglycemia enhances AGEs 
production and then interacts with RAGE. As a conse-
quence, there is an increase in the ROS production of the 
vascular cells, e.g., endothelial cells, smooth muscle cells, 

and mononuclear phagocytes. These are also involved 
in diabetes-induced atherosclerosis, nephropathy, and 
retinopathy. Therefore, there is an elevation in the vascu-
lar inflammation and AD pathogenesis [58–60].

Several studies showed insulin resistance, impaired 
insulin receptor, insulin-like growth factor, and glucose 
toxicity might be the key features through which T2DM 
influences AD [58]. Aging, hypercholesterolemia, ath-
erosclerosis, hypertension, obesity, and inflammation 
are some additional risk factors related to both T2DM 
and AD [61]. Defective insulin receptor signaling in 
T2DM patients cause Aβ toxicity in the neurons which 
could eventually lead to Aβ-induced oxidative stress in 
cells. Additionally, an increased amount of Aβ interact-
ing with the neuronal RAGE causes free radical-mediated 
cellular oxidative stress and activation of transcription 
factor NF-κB, resulting in an increase in the expression 
of various inflammatory cytokines. Lue et  al. discussed 
different mechanisms of T2DM and AD as well as the 
probable synergism of these two diseases when occur-
ring in the same patient. There is strong evidence that 
supports inflammation as the key feature in AD and 
T2DM patients. In both AD and T2DM, there is an ele-
vated level of inflammatory mediators and markers like 
cytokines (e.g., IL-1β, IL-6, TNF-α), chemokines (e.g., 
IL-8, MCP-1), growth factor (G-CSF), and S100B in the 
affected brain regions and pancreas of AD and T2DM 
patients respectively. The involvement of some recep-
tors and ligands, e.g., macrophage scavenger receptors 
(MSR-A, MSR-B), toll-like receptors (TLR2, TLR4), and 
advanced glycation end-products (RAGE; AGEs) were 
found in both DM and AD [58].

The latest evidence showed that RAGE and its ligands, 
S100B and HMG-1, induced oxidative stress and inflam-
mation are involved in cell injury and apoptotic cell death 
in pancreatic islet cells via NADPH oxidase. Inhibition 
of AGEs production and RAGE-associated inflamma-
tory mechanisms are also responsible [62]. NADPH oxi-
dase stimulation in occurrence with free fatty acids and 
high glucose level escalates the proliferation of TLR2 and 
TLR4 via protein kinase C. This results in the induction 
of inflammatory response through activation of NF-κB. 
TLR4 in pancreatic cells is upregulated and interferon-
inducible protein-10 (IP-10), a chemokine ligand acti-
vates the receptor leading to cell apoptosis of islets cells. 
In developing T2DM therapeutics, enhancing soluble 
RAGE (sRAGE)-related mechanisms were thought to be 
effective as sRAGE antagonizes the RAGE functions both 
in the brain and periphery. sRAGE also has a protective 
function against inflammation. As in T2DM, there is a 
deficiency of sRAGE. Therefore, molecules having the 
ability to block RAGE or increase the function of sRAGE 
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can be potential therapeutics for both T2DM and AD 
[58].

RAGE in cardiovascular disease: pathways leading 
to AD
Different studies showed that midlife hypertension is 
associated with AD. Amyloid beta (Aβ), the hallmark of 
AD, was found in the heart and the brain of Alzheimer’s 
patients. However, from different animal model studies 
and human autopsy, it is evident that aging, atheroscle-
rosis, hypercholesterolemia, heart failure, myocardial 
infarction, impaired renin-angiotensin system, etc., are 
all potential risk factors for both AD and CVD and differ-
ent anti-hypertensive agents and other pharmacological 
agents for heart diseases are being considered to be ther-
apeutic interventions for AD [63]. Blood vessels located 
in the brain help to transport essential nutrients and also 
eliminate the waste products from the central nervous 
system (CNS) [64]. The interrelation between the health 
of the brain and the overall health of the heart and blood 
vessels is becoming increasingly evident from the current 
studies. Oxygen and nutrient-rich blood are required 
for the brain to function properly and a healthy heart 
ensures enough blood is pumped and circulated through 
the blood vessels. Many factors, like smoking, obesity, 
diabetes, and high cholesterol which are responsible for 
the risk of CVD, are well connected to the increased risk 
of dementia. Mid-life hypertension is also associated as a 
risk factor for late-life dementia [65]. However, coronary 
artery bypass surgery (CABG), atrial fibrillation, conges-
tive heart failure (CHF), coronary artery disease (CAD), 
stroke, and myocardial ischemia are all linked with the 
progression of dementia and AD [66]. CAD and other 
vascular diseases result in the accumulation of SP and 
NFT in the brain, which is the main cause of AD [67]. In 
CAD, AGE as well as its receptor RAGE plays a vital role 
in the formation of atherosclerosis. RAGE-AGE interac-
tions are atherogenic and an elevated level of AGE-RAGE 
stress causes progression of CAD [68].

Hypertension
Recent studies suggested that hypertension is associ-
ated with AD. Hypertension plays a key role in brain 
pathologies such as stroke and dementia [69]. From 
population-based studies, it was evident that both high 
systolic blood pressures (SBP) and diastolic blood pres-
sures (DBP) can accelerate the onset of clinical AD by 
10 to 15 years. Almost 4000 Japanese American men 
were examined in the Honolulu-Asia aging study during 
1965-1971 to verify the findings and in 1991 re-exam-
ined for dementia. This study demonstrated that AD and 
vascular dementia can be developed 20-26 years later 
after being diagnosed with a high SBP or DBP. Further 

research from the above aging study reported that lower 
brain weight and increased amount of SP in both neocor-
tex and hippocampus were associated with midlife SBP 
of 160 mmHg or above. In the hippocampus, elevated 
DBP of 95 mmHg or above was associated with increas-
ing NFT. These suggested that hypertension appears dec-
ades before the onset of AD and is immensely related to 
the progression of AD [70]. Risk factors for hypertension 
such as high salt intake, overweight, stress, diabetes, and 
the impaired renin-angiotensin system can be related to 
the onset of AD. Hypertension impairs cerebral blood 
flow (CBF) and increases intracranial pressure [69]. A 
number of studies suggested the cerebral amyloid angi-
opathy (CAA) in association with chronic hypertension 
promotes atherosclerosis in cerebral arteries and causes 
white matter lesions, intracranial hemorrhage, and 
ischemic stroke [71–73]. Chronic hypertension changes 
the structure and function of cerebral blood vessels and 
disrupts the balance between CNS and periphery main-
tained by BBB. As a result, an increased amount of Aβ 
interacts with the RAGE receptors and causes Aβ accu-
mulation and neurodegeneration. Normally, RAGEs are 
found in the BBB for Aβ transportation. However, from 
transgenic murine models, it is reported that RAGE 
expression is upregulated in the hypertensive state. This 
accumulates Aβ, initiates an immune response, promote 
inflammation, and cognitive dysfunction [74].

Atherosclerosis and coronary artery disease (CAD)
The atherosclerotic arterial disease can be manifested 
clinically as CVD which is accountable for almost 70% 
of all causes of death in patients with T2DM [75]. Ath-
erosclerosis and AD are two significant life-threatening 
conditions and when act together synergistically can be 
fatal and dangerous to public health. Atherosclerosis is 
the clogging and narrowing of blood vessels by plaques, 
and fatty deposits usually cholesterol. From the early 
1990s, atherosclerosis is associated with the pathogenesis 
of dementia. Risk factors of atherosclerosis include dia-
betes, hypercholesterolemia, aging, and hyperhomocyst-
einemia [76]. There are a lot of studies regarding the link 
between AD and atherosclerosis. Lately, investigators 
found that 77% of AD subjects in a large cohort of 1000 
cases with microscopic neuropathological data had an 
apparent circle of Willis atherosclerosis at a significantly 
higher rate than that of normal subjects or subjects 
with non-AD disease [77]. Furthermore, a study of 4371 
stroke-free middle-aged patients found that atheroscle-
rosis can predict future cognitive impairment levels even 
after 7 years [78]. Then in a 10-year fold-up, a longitudi-
nal study of population-based subjects depicted that the 
thickness of intima-media was implicated with a higher 
risk of developing cognitive impairment [79]. Also, some 
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studies show that apolipoprotein E4 or APOE4 is a prom-
inent genetic risk factor of dementia as well as AD which 
increases BBB damage, CAA, and fibrinogen deposits in 
the human brain [80]. Overexpression of APOE4 causes 
increased circulating levels of cholesterol which results 
in coronary artery disease. APOE4 and increased cho-
lesterol concentration lead to elevated levels of oxidized 
low-density lipoproteins (LDL), which causes neuronal 
cell death once reached in the brain [81]. Atherosclerosis 
causes reduced blood flow and blood volume or oligemia 
which can lead to overexpression and enhanced process-
ing of Aβ precursor protein (APP). APP promotes Aβ 
accumulation in the brain and causes inflammation and 
further neuronal injury [76].

Renin‑angiotensin system
The Renin-angiotensin system (RAS) can be defined 
as a hormonal system that maintains the regulation of 
body water and plays an important role in the cardio-
vascular system where angiotensin I is a main compo-
nent or effector. RAS exerts vasoconstrictive properties 
by Ang II which acts on the angiotensin type 1 receptor 
(AT1R) and angiotensin type 2 receptor (AT2R). Kid-
neys produce the enzyme renin which produces angio-
tensin I (Ang I) by acting on the angiotensinogen. After 
that, Ang I is converted into angiotensin II (Ang II) by 
the angiotensin-converting enzyme (ACE). Angioten-
sin promotes aldosterone secretion, vasoconstriction, 
sodium retention, activation of the sympathetic nerv-
ous system. It also increases cytosolic-free calcium, ROS 
production, and subsequently stimulates a series of other 
possible atherogenic processes including hyperplasia, 
hypertrophy of vascular smooth muscle cells [82, 83]. An 
elevated amount of angiotensin 2 in the brain can impair 
memory functions but angiotensin 2 receptor blockers 
or antagonists have improved the cognitive functions 
in mice models [84–87]. Ang II causes brain inflamma-
tion by oxidative stress via the AT1R while AT2R sign-
aling has a beneficial effect on learning and memory. 
Angiotensin receptor blockers (ARBs) inhibit mainly AT1 
receptor signaling which increases the potentially effec-
tive pathway of AT2 receptor toward improved memory 
functions [88]. Now, there is increasing numbers of evi-
dence that the RAS system, AGEs, and the AGE-RAGE 
system interact with each other. It was suggested that 
AGE-RAGE binding stimulates intracellular calcium of 
vascular smooth muscle and other cells which can be 
mediated by ROS [89, 90]. Sprague Dawley rats infused 
with AGE-modified rat serum albumin increased renal 
expression of angiotensin, ACE, and angiotensin receptor 
type 1 and also increased renal ACE activity. This study 
further showed glomerular and tubular cell growth and 
AGE accumulation. While an angiotensin receptor type 

1  (AT1R) blocker has antagonized these changes. A study 
conducted by Kehoe et  al. showed increased accumula-
tion and deposition of Aβ peptides by Ang II along with 
ACE in AD animal models [91]. Ang II also promotes 
cerebrovascular dysfunction and micro-vascular amyloid 
deposition which then, in turn, accelerate AD symptoms 
and outcomes [92]. Fukami et  al. showed that AGEs-
RAGEs interactions increase ROS production that stimu-
lates Ang II level in vascular and other cells. In another 
animal-model study of the rat kidney, oxidative stress 
increased the activity of ACE via oxidation of sulfhydryl 
(-SH) groups [93, 94]. AGE-RAGE interactions involved 
with reactive oxygen species, NF-κB, and the RAS system 
cause AGE-induced DNA damage to different cell types 
[95]. There are also further animal modal studies and 
human clinical studies to prove the correlation among 
the AGEs, RAGEs, RAS systems which are involved sig-
nificantly in vascular diseases like hypertension, athero-
sclerosis, and diabetes, which are potential risk factors 
for the onset of AD [88, 96].

Conclusions
AD is the most prominent cause of dementia worldwide 
and miserably there has been no innovative therapy avail-
able for AD. RAGE plays an important mediator role in 
the progression of AD. In the early stages of Alzheimer’s 
disease, the immune system promotes the clearance of 
amyloid peptides. However, as the disease progresses, 
activation of the innate immune system along with the 
inability to secrete toxic Aβ peptides can lead to chronic 
inflammation in the brain. The presence of RAGE for sev-
eral cell types contributing to the potential for neuronal 
dysfunction in AD, including blood-brain barrier cells, 
microglia, astrocytes, and neurons. RAGE-mediated Aβ 
formation, tau phosphorylation, and other inflamma-
tory pathways enhance AD development. AD is linked 
with progression with several cardiovascular diseases 
like hypertension, CAD, CHF, and stroke. RAGE inter-
acts with the RAS systems which may influence ROS 
production and the NF-κB signaling pathway to cause 
cell damage. Also, RAGE and RAS systems influence 
the pathophysiology of diabetic complications such as 
retinopathy, nephropathy, and atherosclerosis. New com-
pound targeting RAGE expression, RAGE-ligand interac-
tion, AGE formation, and upregulation of sRAGE can be 
a potential therapeutic agent to prevent or slow down the 
development of AD. Further investigations are needed to 
find out the mechanistic role of RAGE and its association 
with different metabolic disorders.
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